Browse > Article
http://dx.doi.org/10.11625/KJOA.2020.28.4.659

Anti-oxidant and Anti-inflammatory Effects of Ethanol Extracts from Leonurus japonicus Houtt. on LPS-induced RAW 264.7 Cells  

Choi, You-Na (전북대학교 농업생명과학대학 농학과)
Choi, Yu-Kyung (전북대학교 농업생명과학대학 작물생명과학과)
Nan, Li (전북대학교 농업생명과학대학 작물생명과학과)
Choo, Byung-Kil (전북대학교 농업생명과학대학 작물생명과학과)
Publication Information
Korean Journal of Organic Agriculture / v.28, no.4, 2020 , pp. 659-677 More about this Journal
Abstract
Leonurus japonicus (L. japonicus) Houtt., a biennial plant in the Lamiaceae family is broadly distributed in Asia such as Korea, China, Japan. The aerial part of L. japonicus is used as a traditional medicine to treat uterine disease including dysmenorrhea, amenorrhea, sterility. In this study, we examined the antioxidant and anti-inflammatory effects of L. japonicus ethanol extracts. The antioxidant activity of L. japonicus was measured by total polyphenol and flavonoid content, and DPPH, ABTS scavenging, reducing power activity, and intracellular ROS expression assay. The anti-inflammatory effects were measured by nitric oxide (NO), cytokines (TNF-α and IL-1β) production and inflammatory protein expression in LPS-induced RAW 264.7 cells. Total polyphenol and flavonoid content of L. japonicus were 51.40 ± 0.47 mg of gallic acid equivalents/g and 73.28 ± 0.10 mg of rutin equivalents/g respectively. DPPH, ABTS radical scavenging activity and reducing power activity tended to increase concentration-dependent and treatment L. japonicus with 400 ㎍/mL reduced ROS production by 69.5%. Furthermore, L. japonicus inhibited NO, TNF-α and IL-1β production in a concentration-dependant manner and reduced the expression levels of inflammatory proteins via regulating NF-κB, MAPK pathway. Therefore, we suggest that L. japonicus could be a natural antioxidants and medicinal source to treat oxidative stress and inflammation-related disease.
Keywords
anti-inflammatory; antioxidant; Leonurus japonicus; MAPK; NF-${\kappa}B$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ravipati, A. S., L. Zhang, S. R. Koyyalamudi, S. C. Jeong, N. Reddy, J. Bartlett, P. T. Smith, K. Shanmugam, G. Munch, M. J. Wu, M. Satyanarayanan, and B. Vysetti. 2012. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement Altern. Med. 12: 173.
2 Senevirathne, M., S. H. Kim, N. Siriwardhana, J. H. Ha, K. W. Lee, and Y. J. Jeon. 2006. Antioxidant potential of ecklonia cavaon reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci. Technol. Int. 12: 27-38.
3 Shin, H. Y., S. H. Kim, S. M. Kang, I. J. Chang, S. Y. Kim, H. Jeon, K. H. Leem, W. H. Park, J. P. Lim, and T. Y. Shin. 2009. Anti-inflammatory activity of Motherwort (Leonurus sibiricus L.). Immunopharmacol. Immunotoxicol. 31: 209-213.
4 Sudha, G., M. S. Priya, R. I. Shree, and S. Vadivukkarasi. 2011. In vitro free radical scavenging activity of raw pepio fruit (Solanum muricatum aiton). Int. J. Curr. Pharml. Res. 3.
5 Urquiaga, I. and F. Leighton. 2000. Plant Polyphenol Antioxidants and Oxidative Stress. Biol. Res. 33: 55-64.
6 Yu, S. Y., Y. J. Lee, H. S. Song, H. J. Lim, H. S. Choi, B. Y. Lee, S. N. Kang, and O. H. Lee. 2012. Antioxidant Effects and Nitrite Scavenging Ability of Extract from Acanthopanax cortex Shoot. Korean J. Food Nutr. 25: 793-799.
7 Chapple, I. L. 1997. Reactive oxygen species and antioxidants in inflammatory diseases. J. Clinl. Periodontol. 24: 278-296.
8 Kiselova, Y., D. Ivanova, T. Chervenkov, D. Gerova, B. Galunska, and T. Yankova. 2006. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytother. Res. 20: 961-965.
9 Surh, Y. J., K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park, and S. S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res. 480-481: 243-268.
10 Zhai, Z., A. Solco, L. Wu, E. S. Wurtele, M. L. Kohut, P. A. Murphy, and J. E. Cunnick. 2009. Echinacea increases arginase activity and has anti-inflammatory properties in RAW 264.7 macrophage cells, indicative of alternative macrophage activation. J. Ethnopharmacol. 122: 76-85.
11 Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy - From molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. 1754: 253-262.
12 Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci. 2012. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5: 9-19.
13 Dinarello, C. A. 2010. Anti-inflammatory Agents: Present and Future. Cell. 140: 935-950.
14 Hu, B., H. Zhang, X. Meng, F. Wang, and P. Wang. 2014. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. J. Ethnopharmacol. 153: 846-853.
15 Lee, S., D. Lee, J. Baek, E. B. Jung, J. Y. Baek, I. K. Lee, T. S. Jang, K. S. Kang, and K. H. Kim. 2017. In vitro assessment of selected Korean plants for antioxidant and antiacetylcholinesterase activities. Pharm. Biol. 55: 2205-2210.
16 Moloney, J. N. and T. G. Cotter. 2018. ROS signalling in the biology of cancer. Semin Cell Dev. Biol. 80: 50-64.
17 Pietta, P. G. 2000. Flavonoids as antioxidants. J. Nat. Prod. 63: 1035-1042.
18 Shang, X., H. Pan, X. Wang, H. He, and M. Li. 2014. Leonurus japonicus Houtt.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 152: 14-32.
19 Lee, H. S., D. S. Ryu, G. S. Lee, and D. S. Lee. 2012. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: Suppression of NF-κB activation and MAPK signaling. J. Ethnopharmacol. 140: 271-276.
20 Byun, E. B., W. Y. Park, D. H. Ahn, Y. C. Yoo, C. Park, B. S. Jang, W. J. Park, E. H. Byun, and N. Y. Sung. 2016. Comparison study of three varieties of red peppers in terms of total polyphenol, total flavonoid contents, and antioxidant activities. Korean J. Food Sci. Nutr. 45: 765-770.
21 Hwang, D., B. C. Jang, G. Yu, and M. Boudreau. 1997. Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide. Biochem. Pharmacol. 54: 87-96.
22 Oliveira, A. S., L. M. Cercato, M. T. de Santana Souza, A. J. O. Melo, B. D. S. Lima, M. C. Duarte, A. A. S. Araujo, A. M. de Oliveira E Silva, and E. A. Camargo. 2017. The ethanol extract of Leonurus sibiricus L. induces antioxidant, antinociceptive and topical anti-inflammatory effects. J. Ethnopharmacol. 206: 144-151.
23 Allison, M. C., A. G. Howatson, C. J. Torrance, F. D. Lee, and R. I. Russell. 1992. Gastrointestinal Damage Associated with the Use of Nonsteroidal Antiinflammatory Drugs. N. Engl. J. Med. 327: 1882-1883.
24 Anand, S. P. and N. Sati. 2013. Artificial Preservatives and Their Harmful Effects: Looking Toward Nature for Safer Alternatives. Int. J. Pharm. Sci. Res. 4: 2496-2501.
25 Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature. 181: 1199-1200.
26 Cheng, P., T. Wang, W. Li, I. Muhammad, H. Wang, X. Sun, Y. Yang, J. Li, T. Xiao, and X. Zhang. 2017. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-κB pathway. Front Pharmacol. 8: 547.
27 Das, K. and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2: 53.
28 English, J. M. and M. H. Cobb. 2002. Pharmacological inhibitors of MAPK pathways. In Trends Pharmacol. Sci. 23: 40-45.
29 Ferreira, I. C. F. R., P. Baptista, M. Boas, and L. Barros. 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100: 1511-1516.
30 Hu, X. D., Y. Yang, X. G. Zhong, X. H. Zhang, Y. N. Zhang, Z. P. Zheng, Y. Zhou, W. Tang, Y. F. Yang, L. H. Hu, and J. P. Zuo. 2008. Anti-inflammatory effects of Z23 on LPS-induced inflammatory responses in RAW264.7 macrophages. J. Ethnopharmacol. 120: 447-151.
31 Kenny, O. M., C. M. McCarthy, N. P. Brunton, M. B. Hossain, D. K. Rai, S. G. Collins, P. W. Jones, A. R. Maguire, and N. M. O'Brien. 2013. Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sci. 92: 775-782.
32 Muthusamy, V. and T. J. Piva. 2010. The UV response of the skin: A review of the MAPK, NFκB and TNFα signal transduction pathways. Arch Dermatol. Res. 302: 5-17.
33 Kim, J. Y., Y. H. Lee, J. Y. Kim, and R. B. Kyung. 2005. Study of Antioxidation Action of Lenonuri herba Extract. Korean J. Cosmetric Sci, 51: 189-196.
34 Lee, J., H.-J. Kim, G. Y. Jang, K. H. Seo, M. R. Kim, Y. H. Choi, and J. W. Jung. 2020. Effect of Leonurus japonicus Houtt. on Scopolamine-induced Memory Impairment in Mice. J. Physiol. Pathol. Korean Med. 34: 81-87.
35 Lee, S. G., D. J. Jo, H. J. Chang, and H. Kang. 2015. Antioxidant and Anti-inflammatory Activities of Ethanol Extracts from Aralia continentalis Kitagawa, Korean J. Naturopathy. 4: 10-14.
36 Marinova, G. and V. Batchvarov. 2011. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian J. Agri. Sci. 17: 11-24.