• Title/Summary/Keyword: LPS(Lipopolysaccharide)

Search Result 1,924, Processing Time 0.026 seconds

Synergistic Effect of Interleukin-18 on the Expression of Lipopolysaccharide-Induced IP-10 (CXCL-10) mRNA in Mouse Peritoneal Macrophages

  • Kim, Hyo-Young;Kim, Jae-Ryong;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1605-1612
    • /
    • 2006
  • Interleukin (IL)-18, a member of the family of IL-l cytokine, is one of the principal inducers of $interferon-{\gamma}(IFN-{\gamma})$ in T lymphocytes and natural killer cells. The objective of the present study was to evaluate the effect of IL-18 on the expression of chemokine IP-10 (CXCL-10) mRNA in mouse peritoneal macrophages. IL-18 had very weak direct effect or synergistic effect with IL-12 on the expression of IP-10 mRNA in C57BL/6 mouse peritoneal macrophages. However, IL-18 pretreatment was found to playa cooperative role in the expression of lipopolysaccharide (LPS)-induced IP-10 mRNA. For the expression of LPS-induced IP-10 mRNA, the synergistic effect was detected after 16 h of IL-18 pretreatment prior to LPS stimulation. The expression level of CD14 in cells stimulated with LPS was not changed by IL-18 pretreatment, and the level of $IFN-{\gamma}$ production during IL-18 pretreatment plus LPS stimulation was barely discernible ($0.36{\pm}0.31pg/ml$). Namely, the synergistic effect of IL-18 pretreatment was not related to a change of LPS receptor, CD14 expression, and the production of $IFN-{\gamma}$ by the interaction between IL-18 and LPS. The synergistic effect of IL-18 pretreatment on the expression of LPS-induced IP-10 was related to not NF-kB but AP-1 activation, and associated with the extracellular signal-regulated kinase (ERK) pathway, one of the mitogen-activated protein kinase signaling pathways. These results provide useful information that may elucidate the mechanisms underlying the effect of IL-18 on the expression of IP-10 mRNA.

Altered Regulation of Renal Nitric Oxide and Atrial Natriuretic Peptide Systems in Lipopolysaccharide-induced Kidney Injury

  • Bae, Eun-Hui;Kim, In-Jin;Ma, Seong-Kwon;Lee, Jong-Un;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.273-277
    • /
    • 2011
  • Nitric oxide (NO) and atrial natriuretic peptide (ANP) may induce vascular relaxation by increasing the production of cyclic guanosine monophosphate (cGMP), an important mediator of vascular tone during sepsis. This study aimed to determine whether regulation of NO and the ANP system is altered in lipopolysaccharide (LPS)-induced kidney injury. LPS (10 $mg{\cdot}kg^{-1}$) was injected in the tail veins of male Sprague-Dawley rats; 12 hours later, the kidneys were removed. Protein expression of NO synthase (NOS) and neutral endopeptidase (NEP) was determined by semiquantitative immuno-blotting. As an index of synthesis of NO, its stable metabolites (nitrite/nitrate, NOx) were measured using colorimetric assays. mRNA expression of the ANP system was determined by real-time polymerase chain reaction. To determine the activity of guanylyl cyclase (GC), the amount of cGMP generated in response to sodium nitroprusside (SNP) and ANP was calculated. Creatinine clearance decreased and fractional excretion of sodium increased in LPS-treated rats compared with the controls. Inducible NOS protein expression increased in LPS-treated rats, while that of endothelial NOS, neuronal NOS, and NEP remained unchanged. Additionally, urinary and plasma NOx levels increased in LPS-treated rats. SNP-stimulated GC activity remained unchanged in the glomerulus and papilla in the LPS-treated rats. mRNA expression of natriuretic peptide receptor (NPR)-C decreased in LPS-treated rats, while that of ANP and NPR-A did not change. ANP-stimulated GC activity reduced in the glomerulus and papilla. In conclusion, enhancement of the NO/cGMP pathway and decrease in ANP clearance were found play a role in the pathogenesis of LPS-induced kidney injury.

Effects of Root of Taraxacum coreanum Nakai on the Inhibition of Inflammation and Oxidative Stress Induced by Lipopolysaccharide in ICR Mice (흰 민들레 뿌리의 항염증 및 산화 스트레스 개선 효과)

  • Cho, Byung-Je;Kim, Mijeong;Song, Yeong Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1763-1770
    • /
    • 2015
  • The effects of root of Taraxacum coreanum Nakai (TC), on the suppression of inflammation and oxidative stress induced by lipopolysaccharide (LPS) in ICR mice were studied. LPS (10 mg/kg body weight) was injected into ICR mice in between two consecutive oral administrations. Hot water extract of fresh TC (HWETC) was administered to mice immediately before and 24 h after LPS injection. The animal groups used in this study were as follows: NOR group (PBS injection, DW administration), CON group (LPS injection, DW administration), and TC group (LPS injection, 1.4 g/kg bw of HWETC administration). Mice in the CON group lost weight due to inflammation induced by LPS, while the body weight of the TC group mice increased significantly, indicating that inflammation was inhibited by HWETC administration. Compare with the CON group, plasma and hepatic triglyceride, reactive oxygen species, peroxynitrite, and hepatic thiobarbituric acid reactive substances concentrations of the TC group decreased significantly (P<0.05). The protein expression of a pro-inflammatory transcription factor, nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) and its target enzyme, cyclooxygenase 2, increased in response to LPS injection, but was suppressed by HWETC administration (P<0.05). In conclusion, HWETC appears to ameliorate the oxidative stress and inflammatory responses induced by LPS via inhibition of $NF-{\kappa}B$ activation.

Quercitrin Gallate Down-regulates Interleukin-6 Expression by Inhibiting Nuclear Factor-kB Activation in Lipopolysaccharide-stimulated Macrophages

  • Min, Kyung-Rak;Kim, Byung-Hak;Chang, Yoon-Sook;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • v.12 no.2
    • /
    • pp.113-117
    • /
    • 2006
  • Quercitrin gallate was previously isolated from Persicaria lapathifolia (Polygonaceae) as an inhibitor of superoxide production. In the present study, quercitrin gallate was found to inhibit interleukin (IL)-6 production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an $IC_{50}$ value of $63\;{\mu}M$. Furthermore, quercitrin gallate attenuated LPS-induced synthesis of IL-6 transcript but also inhibited LPS-induced IL-6 promoter activity, indicating that the compound could down-regulate IL-6 expression at the transcription level. Since nuclear factor (NF)-kB has been shown to play a key role in LPS-inducible IL-6 expression, an effect of quercitrin gallate on LPS-induced NF-kB activation was further analyzed. Quercitrin gallate exhibited a dosedependent inhibitory effect on LPS-induced nuclear translocation of NF-kB without affecting inhibitory kB (IkB) degradation, and subsequently inhibited LPS-induced NF-kB transcriptional activity in macrophages RAW 264.7. Taken together, quercitrin gallate down-regulated LPS-induced IL-6 expression by inhibiting NF-kB activation, which could provide a pharmacological potential of the compound in IL-6-related immune and inflammatory diseases.

JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts (조골세포에서 Porphyromonas gingivalis Lipopolysaccharide와 니코틴에 의한 염증에 대한 JAK/STAT Pathway의 역할)

  • Han, Yang-keum;Lee, In Soo;Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.17 no.1
    • /
    • pp.81-86
    • /
    • 2017
  • Bacterial infection and smoking are an important risk factors involved in the development and progression of periodontitis. However, the signaling mechanism underlying the host immune response is not fully understood in periodontal lesions. In this study, we determined the expression of janus kinase (JAK)/signal transducer and activator of transcription (STAT) on Porphyromonas gingivalis lipopolysaccharide (LPS)- and nicotine-induced cytotoxicity and the production of inflammatory mediators, using osteoblasts. The cells were cultured with 5 mM nicotine in the presence of $1{\mu}g/ml$ LPS. Cell viability was determined using MTT assay. The role of JAK on inflammatory mediator expression and production, and the regulatory mechanisms involved were assessed via enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and Western blot analysis. LPS- and nicotine synergistically induced the production of cyclooxgenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) and increased the protein expression of JAK/STAT. Treatment with an JAK inhibitor blocked the production of COX-2 and $PGE_2$ as well as the expression of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6 in LPS- and nicotine-stimulated osteoblasts. These results suggest that JAK/STAT is closely related to the LPS- and nicotine-induced inflammatory effects and is likely to regulate the immune response in periodontal disease associated with dental plaque and smoking.

Isolation and Purification of Lipopolysaccharide Derived from Escherichia coli O157:H7 for the Specific Antibody Production (병원성 Escherichia coli O157:H7의 특이 항체 생산을 위한 Lipopolysaccharide분리 및 정제)

  • 최학선;신영민;정숙현;박영민;안원근
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.571-575
    • /
    • 2004
  • Escherichia coli O157:H7 cause hemorrhagic colitis and the extraintestinal complication of hemolytic-uremic syndrome, with their higher incidence occurring in children. Lipopolysaccharide (LPS) of E. coli O157:H7 is very important to make IgG anti-LPS with bactericidal activity. To identify the characteristic of E. coli OI57:H7, we isolated 60 MDa plasmid and amplified stx genes of shiga-like toxin (Stx) 1, 2 of E. coli O157:H7 by polymerase chain reaction (PCR) method. Using the simple purification method which contained phenol extract, ethanol precipitation and gel filtration steps, the LPS of E. coli O157:H7 was isolated and purified. Finally, we confirmed the purity of LPS through SDS-PAGE and silver nitrate staining.

Orostachydis Herba and Fermented Orostachydis Herba Enhances Anti-Inflammatory and Anti-oxidant Effect against Lipopolysaccharide-Induced Acute Liver Injury in Mice (Lipopolysaccharide로 유발한 급성 간손상 마우스 모델에서 와송과 발효 와송의 항산화 조절과 염증 예방 효과 비교 연구)

  • Kang, HanEun;Lee, AhReum;Roh, Seong-Soo;Seo, Young-Bae
    • The Korea Journal of Herbology
    • /
    • v.32 no.2
    • /
    • pp.65-75
    • /
    • 2017
  • Objectives : This study aimed to evaluate the protective effect of Orostachydis Herba (OH) and Fermented OH (OHF) against the acute liver injury by lipopolysaccharide (LPS). Methods : OHF by 4 lactic bacteria such as (Lactobacillus hilgardii (OHF1), Leuconostoc mesenteroides (OHF2), Pediococcus acidilactici (OHF3), Saccharomyces cerevisiae (OHF4)) were prepared. Samples were selected to OHF0, OHF2, OHF3 based on UPLC analysis, DPPH, ABTS radical scavenging activities. To evaluate the protective effect of OHF on liver injury mice, ICR mice were divided into 5 groups: Normal mice (Nor), LPS (20 mg/kg) treated mice (Veh), administrated OHF0, OHF2 OHF3 200 mg/kg body weight during 8 days before LPS injection. Serum and liver were collected 24 hours after LPS injection. Results : The activity was high in order of OHF0 and OHF3 in DPPH and ABTS radical scavenging activities. The quercetin contents for bioactive ingredient of OH was 5.39, kaempferol contents was 9.94 by UPLC analysis. The LPS-treated vehicle group significantly increased liver weight, and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in serum. In contrast, administrated OHF3 group decreased liver weight, AST, ALT. In addition, OHF3 groups reduced the elevated levels of reactive oxygen species (ROS) in serum and tissues. Moreover, AP-1, iNOS and COX-2 were significantly decreased in OHF2 and OHF3. But $NF-{\kappa}B$ p65 and $TNF-{\alpha}$ only showed a significant reduction in OHF3. Conclusions : Therefore, these results suggest that fermented Orostachydis Herba might be protective effect on liver injury through anti-oxidant effect.

Impaired Functions of Lymphocytes on Nitric Oxide Production in Endotoxin- Tolerant Mice (내독소내성 마우스에서 Nitric Oxide 생성에 미치는 림프구 부전)

  • Gil, Young-Gi;Kang, Mi-Kyung
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1471-1478
    • /
    • 2008
  • In this study, nitric oxide (NO) production in a macrophage-lymphocyte co-culture system was used to assess the cytokine producing capability of cells during endotoxin tolerance in mice. Incubation of peritoneal macrophages with interferon-$\tau$ (IFN-$\tau$) in the presence of lipopolysaccharide (LPS) augmented NO synthesis. Exogenous tumor necrosis factor-$\alpha$(TNF-$\alpha$) could also replace LPS for the stimulation of NO production. Macrophages co-cultured with splenic lymphocytes showed augmented NO synthesis by LPS alone. However, pretreatment of mice with 2.5 mg/kg LPS completely prevented the lethality and the increase of blood TNF-$\alpha$ and IFN-$\tau$ after the second challenge with a lethal dose of LPS. In addition, when macrophages prepared from LPS-tolerant mice were co-cultured with normal splenocytes, LPS also could not induce the production of NO, even in the presence of exogenous TNF-$\alpha$. Moreover, when normal macrophages were co-cultured with splenocytes obtained from LPS-tolerant mice, stimulation with LPS could not evoke the NO production enhancement. However, this down-regulation was able to reverse by exogenous IFN-$\tau$ or concanavalin A (ConA), a stimulator of IFN-$\tau$ production. Our results indicate that not only macrophages but also lymphocytes contribute to LPS tolerance. As INF-$\tau$ can enhance the expression of TNF-$\alpha$, the decrease of INF-$\tau$synthesis from lymphocytes may orchestrate with the decrease of TNF-$\alpha$ synthesis from LPS-tolerant macrophages for the production of tolerant state and the prevention of excessive inflammation. Therefore, LPS tolerance may be exploited for prophylaxis of severe sepsis in patients at risk.

Peroxynitrite Scavenging Activity of Sabohwanin Lipopolysaccharide-Induced Oxidatively-Stressed Mice (Lipopolysaccharide로 산화 스트레스를 유도한 Mouse에서 사보환(四補丸)의 Peroxynitrite 억제 효과)

  • Kweon, Youl;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.80-91
    • /
    • 2007
  • Objectives : Peroxynitrite (ONOO-), superoxide anion radical (?O2-) and nitric oxide (NO) are cytotoxic because they can oxidize several cellular components such as proteins, lipids and DNA. They have been implicated in the aging process, and age-related diseases such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate Sabohwan's activity for scavenging ONOO- and its precursors. NO and ?02-. Methods : For this study, the fluorescent probes, namely 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), 4.5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used. Results : Sabohwanblocked tert-butylhydroperoxide (t-BHP)-induced cell death in a dose-dependent fashion. It scavenged t-BHP-induced ONOO-, NO and ?O2- in YPEN cells. Sabohwan inhibited the generation of ONOO-, NO and ?O2- in the lipopolysaccharide (LPS)-treated mouse kidney postmitochondria both in vitro and in vivo. The lipid peroxide level increased and glutathione level decreased in the LPS-treated mice, whereas the ones in the Sabohwanadministered group among the LPS-treated mice reversed toward their natural levels. Conclusions : These results suggest that Sabohwanis an effective ONOO-, ?O2- and NO scavenger, and thereby it might have a potential role as a therapy against the aging process and age-related diseases.

  • PDF

Inhibitory Effect of Curcumin on Nitric Oxide Production in Lipopolysaccharide-Stimulated RAW264.7 Cells and Its Suppressive Mechanism (대식세포주 RAW264.7 세포에서 Curcumin의 Lipopolysaccharide에 의한 Nitric Oxide 생성 억제 효과)

  • Lee, Yong-Gyu;Cho, Jae-Youl
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.451-456
    • /
    • 2007
  • Curcumin, a polyphenolic antioxidant purified from turmeric, has been known to possess various biological activities such as anti-oxidative, anti-inflammatory and anti-cancer effects. In this study, we have explored anti-inflammatory effect of curcumin using Gram (-) bacterium-derived endotoxin (lipopolysaccharide: LPS) and macrophage cell line RAW264.7. Curcumin suppressed NO production in LPS-activated RAW264.7 cells in a dose-dependent manner, Curcumin also blocked the activation of $NF-{\kappa}B$ but not AP-1 according to luciferase assay. Furthermore, this compound suppressed the phosphorylation of a series of intracellular signaling components such as Src, JAK-2, Akt, IKK and $I{\kappa}B{\alpha}$ under LPS stimulation in a time dependent manner, Therefore, our data suggest that curcumin was able to protect the host from Gram(-) bacterial-infection-mediated inflammatory symptoms.