• Title/Summary/Keyword: LPI(Low-Probability of Intercept)

Search Result 17, Processing Time 0.024 seconds

Analysis of the Chip Waveforms for LPI Communication

  • Maing, Jun-Ho;Ryu, Heung-Gyoon;Lee, Dae-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.63-67
    • /
    • 2004
  • DAM(Delay-And-Multiplier) intercept receiver usually detects the symbol rate of the transmitted DS spread spectrum signal for the feature extraction. It is important for secure communication to reduce the normalized output signal-to-noise ratio that is generated at the DAM intercept receiver as a measure of detectability. In this paper, several kinds of chip waveforms are novelly analyzed for LPI(Low-Probability of Intercept) communication against DAM intercept receiver. Consequently, it is shown that the rectangular chip waveform shows the best LPI performance in the bandwidth of 2/$T_c$TEX>, 4/$T_c$TEX>, and 6/$T_c$TEX>/. Except the rectangular waveform, kaiser chip waveform show better LPI performance than the other waveforms in the bandwidth of 4/$T_c$TEX> and 6/$T_c$TEX>.

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

A Study on Detection Probability Reduction of LPI Radar's Platform (저피탐(LPI) 레이더 탑재 플랫폼의 피탐 확률 감소에 관한 연구)

  • Park, Tae-Yong;Kim, Wan-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1243-1248
    • /
    • 2014
  • In General, LPI radar's detection probability by ES equipments is lower than that of conventional pulsed radar because of very low transmitting power and high antenna gain etc. LPI radar is a kind of RF stealth technique such as RCS reduction design. Therefore the ultimate goal of LPI radar is detection probability reduction by opponent. If one of the two, RCS value or LPI radar performance is not sufficient, own platform will be found first by opponent. In this paper, some considerations are suggested for detection probability reduction.

Anti-Jamming Performance Analysis of Chirped BPSK System (Chirped BPSK 시스템의 항재밍 성능 분석)

  • 유형만;윤성렬;정병기;김용로;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.906-911
    • /
    • 2001
  • In this paper, LPI(low probability of intercept) and AJ(anti jamming) performance of the chirped BPSK system are analyzed. In the chirp method the cyclostationary of the signal is eliminated, since the instantaneous frequency is varied randomly within the whole spread bandwidth. Therefore, chirp method is considered for good LPI system against DAM(delay-and-multiplier) or SC (squaring circuit) interceptor which detects the chip rate or carrier frequency. Longer chirp duration makes the LPI performance better. From the simulation results, the chirp method has better AJ performance than DS(direct sequence) system in the PBNJ(partial band noise jammer) channel. At the same JSR(jammer to signal power ratio) level, chirped BPSK system has more robust AJ performance against MTJ(multi-tone jammer) than PBNJ.

  • PDF

A study on intra-pulse modulation recognition using fearture parameters (특징인자를 활용한 펄스 내 변조 형태 식별방법에 관한 연구)

  • Yu, KiHun;Han, JinWoo;Park, ByungKoo;Lee, DongWon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.754-756
    • /
    • 2013
  • The modern Electronic Warfare Receivers are required to the current radar technologies like the Low Probability of Intercept(LPI) radars to avoid detection. LPI radars have features of intra-pulse modulation differ from existing radar signals. This features require counterworks such as signal confirmation and identification. Hence this paper presents a study on intra-pulse modulation recognition. The proposed method automatically recognizes intra-pulse modulation types such as LFM and NLFM using classifiers extracted from the features of each intra-pulse modulation. Several simulations are also conducted and the simulation results indicate the performance of the given method.

  • PDF

The Low Probability of Intercept RADAR Waveform Based on Random Phase and Code Rate Transition for Doppler Tolerance Improvement (도플러 특성 개선을 위한 랜덤 위상 및 부호율 천이 기반 저피탐 레이다 파형)

  • Lee, Ki-Woong;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.999-1011
    • /
    • 2015
  • In modern electronic warfare, RADAR is under constant threat of ECM(Electronic Counter Measures) signals from nearby jammers. The conventional linear frequency modulated(Linear-FM) waveform is easy to be intercepted to estimate its signal parameters due to its periodical phase transition. Recently, APCN(Advanced Pulse Compression Noise) waveform using random amplitude and phase transition was proposed for LPI(Low probability of Intercept). But random phase code signals such as APCN waveform tend to be sensitive to Doppler frequency shift and result in performance degradation during moving target detection. In this paper, random phase and code rate transition based radar waveform(RPCR) is proposed for Doppler tolerance improvement. Time frequency analysis is carried out through ambiguity analysis to validate the improved Doppler tolerance of RPCR waveform. As a means to measure the vulnerability of the proposed RPCR waveform against LPI, WHT(Wigner-Hough Transform) is adopted to analyze and estimate signal parameters for ECCM(Electronic Counter Counter Measures) application.

Performance Analysis of AJ and LPI in Chirp Modulation System (Chirp 방식의 LPI 및 AJ 성능 분석)

  • 유흥균
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • 본 논문에서는 chirp 변조를 이용한 통신 시스템의 LPI(low probability of intercept)와 AJ(anti-jamming)성능을 분석하였다. 인터셉터에 DAM(delay and multiplier)과 SC(squaring circuit)가 이용된 경우 CBPSK(Chirped BPSK)의 LPI 성능을 분석하였다. 스펙트럼 확산 방식의 CBPSK와 DS/BPSK 시스템에 대한 AJ 성능을 비교 분석 및 주파수 호핑 방식의 FH/CBFSK(Chirped BFSK)와 FH/BFSK, 그리고 FH/BCM(Binary Chirp Modulation) 시스템에 대한 AJ 성능을 분석하였다. LPI 결과로, CBPSK(Chirped BPSK)은 chirp 변수인 chirp 주기($T_3$가 커질수록 좋은 LPI 성능을 보인다. AJ 결과로, PBNJ(partial band noise jammer)환경에서 CBPSK 방식이 DS/BPSK 방식에 비하여 AJ 성능이 우수하고, 마찬가지로 FH/CBFSK 방식이 FH/BFSK 방식에 비하여 AJ 성능이 우수함을 시뮬레이션으로 확인하였다.

Research trends of biomimetic covert underwater acoustic communication (생체모방 은밀 수중 음향 통신 연구 동향)

  • Seol, Seunghwan;Lee, Hojun;Kim, Yongcheol;Kim, Wanjin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.227-234
    • /
    • 2022
  • Covert Underwater Communication (CUC) signals should not be detected by other unintended users. Similar to the method used in Radio Frequency (RF), covert communication technique sending information underwater is designed in consideration of the characteristics of Low Probability of Detection (LPD) and Low Probability of Intercept (LPI). These conventional methods, however, are difficult to be used in the underwater communications because of the narrow frequency bandwidth. Unlike the conventional methods of reducing transmission power or increasing the modulation bandwidth, a method of mimicking the acoustic signal of an underwater mammal is being studied. The biomimetic underwater acoustic communication mainly mimics the click or whistle sound produced by dolphin or whale. This paper investigates biomimetic communication method and introduces research trends to understand the potential for the development of such biomimetic covert underwater acoustic communication and future research areas.

LPI Performance Analysis of GMSK Modulation Scheme (GMSK 변조 방식의 LPI 성능 분석)

  • 유형만;정병기;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.594-599
    • /
    • 2001
  • The symbol rate which is the main feature of NRZ information signal is detected by DAM (Delay-And-Multiplier) receiver. It is important for secure communication to reduce the normalized output SNR which is calculated at the DAM output as a measure of detectability. In this paper, we use the signal which is modulated by the class of MSK modulation schemes as the input signal of the DAM receiver for analyzing LPI performance and the GMSK(BT=0.3) used in GSM system is highlighted. Consequently, GMSK which has better bandwidth efficiency than other modulation schemes(BPSK, QPSK, OQPSK, and MSK) has better LPI performance compared with other ones. To compare the performances of each modulation scheme fairly, the transmitted powers of each system are set to be same within useful bandwidth.

  • PDF

Automatic Intrapulse Modulated LPI Radar Waveform Identification (펄스 내 변조 저피탐 레이더 신호 자동 식별)

  • Kim, Minjun;Kong, Seung-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • In electronic warfare(EW), low probability of intercept(LPI) radar signal is a survival technique. Accordingly, identification techniques of the LPI radar waveform have became significant recently. In this paper, classification and extracting parameters techniques for 7 intrapulse modulated radar signals are introduced. We propose a technique of classifying intrapulse modulated radar signals using Convolutional Neural Network(CNN). The time-frequency image(TFI) obtained from Choi-William Distribution(CWD) is used as the input of CNN without extracting the extra feature of each intrapulse modulated radar signals. In addition a method to extract the intrapulse radar modulation parameters using binary image processing is introduced. We demonstrate the performance of the proposed intrapulse radar waveform identification system. Simulation results show that the classification system achieves a overall correct classification success rate of 90 % or better at SNR = -6 dB and the parameter extraction system has an overall error of less than 10 % at SNR of less than -4 dB.