• 제목/요약/키워드: LPG engine system

검색결과 116건 처리시간 0.02초

개조된 LPG엔진에서 Mixer와 LPi 연료공급방식의 엔진성능 및 배기특성 (Engine Performance and Emissions Characteristics in an LPG Engine Converted with Mixer and LPi System Fuel Supply Methods)

  • 최경호;김진호;조웅래;한성빈
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1075-1080
    • /
    • 2004
  • In this study, performance and emissions characteristics of an liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system fuel supply methods. A compression ratio for the base diesel engine, 21, was modified into 8, 8.5, 9 and 9.5. The cylinder head and the piston crown were modified to roe the LPG in the engine. Ignition timing was controlled to be at minimum spark advance for best torque (MBT) each case. Engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficiency, CO, THC and NOx. Experimental results showed that the LPi system generates higher power and lower emissions than the conventional mixer fuel supply method.

LPG 엔진 모델링 및 ECM 설계에 관한 연구 (Development of An Engine Modeling and an Engine Control Module for an LPG Engine)

  • 심한섭;선우명호
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.1-9
    • /
    • 1999
  • Liquid Petroleum Gas (LPG) has been widely used for commercial light-duty vehicles worldwide. Since LPG has a higher octane number and a lower maximum combustion temperature than gasoline , it becomes more popular fuel for reducing exhaust emissions. In tihs study, mathematical models of air intake and fuel delivery system are presented, and a PI-controller is designed for air-fuel ratio control. Hardware and software of an engine control module (ECM) are designed for an LPG engine. The ECM is built using a Motorola MC68HC05. In order to control the air-fuel ratio at stoichiometry, the PI-control algorithm is implemented in the ECM. The experiment results show the proto LPG ECM and its control scheme perform well to meet the stoichiometric air-duel ratio requirement.

  • PDF

A Study on the Performance of an LPG (Liquefied Petroleum Gas) Engine Converted from a Compression Ignition Engine

  • Choi, Gyeung-Ho;Kim, Tae-Kwon;Cho, Ung-Lae;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • 에너지공학
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2007
  • The purpose of this study was to investigate the reduction of exhaust gas temperature in a LPG engine that had been converted from a diesel engine. A conventional diesel engine was modified to a LPG (Liquefied Petroleum Gas) engine by replacing the diesel fuel injection pump with a LPG fuel system. The research was performed by measuring the exhaust gas temperature upon varying spark ignition timing, airfuel ratio, compression ratio, and different compositions of butane and propane. Engine power and exhaust temperature were not influenced by various butane/propane fuel compositions. Finally, among the parameters studied in this investigation, spark ignition timing is one of the most important in reducing exhaust gas temperature.

LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구 (A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel)

  • 이민호;정동수;차경옥
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구 (Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine)

  • 김창업;오승묵;강건용
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

LPG 직분사 엔진의 다운사이징 효과 및 시동성 개선을 위한 연료 제어시스템 최적화에 관한 연구 (A Study of Downsizing Effect on Turbocharged LPG Direct Injection(T-LPDI) Engine with Startability Improvement by Optimization of Fuel Control System)

  • 임종석;김도완;박한용;송진오;한정환;육철수;박성민;신용남
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.619-626
    • /
    • 2016
  • The new 1.4 L turbocharged LPG direct injection (T-LPDI) engine is presented in this paper to improve the fuel efficiency of the vehicles installed with the 2.0 L LPG port fuel injection (LPI) engine, while maintaining the performance as a downsizing concept for the new engine platform development. Firstly, the return type high pressure LPG fuel supply system is designed and mounted in the new 1.4 L T-LPDI engine. As a result, this new engine shows a much better WOT performance and approximately 8 % of improved fuel economy level, as compared to the 2.0 L LPI vehicle. Secondly, the LPDI engine specific optimized design for high pressure fuel components and fuel injection control strategies are proposed and evaluated in order to overcome the restartability problem in a heat-soaked condition called the vapor lock phenomenon. Consequently, these experimental results illustrate a great potential for the developed 1.4 L T-LPDI engine as a possible substitute for the 2.0 L LPI engine.

연소제어 전략 및 분사기 위치 변경에 따른 직접분사식 초희박 LPG 엔진의 연소특성 연구 (A Study on the Combustion Characteristics with Control Strategy and Injector Position Changes in a Lean-burn LPG Direct Injection Engine)

  • 박철웅;박윤서;이용규;오승묵;김태영
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.98-104
    • /
    • 2014
  • The technologies employing spray-guided type combustion system for ultra-lean combustion direct injection engine is focused as a promising technology for satisfying emission regulations and improving fuel economy. In the present study, control and design optimization of lean-burn LPG direct injection engine was carried out with control strategy and injection position changes. Inter-injection spark ignition strategy was applied and the effect of the strategy was assessed at relatively higher load operation condition than previous researches. In order to create richer mixture in the vicinity of spark plug electrode, relative distance between the dead-end of injector and the electrode of spark plug was changed.

LPG인젝터의 누설성능 향상에 관한 연구 (Improvement of Leakage Performance of LPG Injector)

  • 김창업;신문성;백승국
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.23-28
    • /
    • 2012
  • 우리나라의 LPG자동차 기술은 2003년 LPG액상분사방식 차량의 양산을 계기로 크게 발전하기 시작하였으며, 지금까지 관련기술의 발전을 거치면서 SULEV 배출가스 규제를 만족하는 수준에 이르렀다. 우리나라의 LPG자동차 등록수는 240여만 대를 넘어서면서 세계 1위의 LPG자동차 보유수를 보이고 있다. 그러나 이러한 많은 대수를 보유하고 있음에도 불구하고, 지금까지 LPG자동차의 핵심 연료시스템은 외산기술을 이용하는 라이센스 제작, 조립 및 판매를 진행하고 있다. 특히 LPG액상분사식 자동차의 핵심부품인 LPG인젝터는 국제 부품공급사인 C사의 D 인젝터를 이용하여 왔다. 이에 본 연구에서는 국산 LPG인젝터의 개발을 이루고자 하며, 개발과정에서 가장 핵심적인 LPG 누설성능 개선에 영향을 미치는 코팅기술의 성능향상연구를 집중하였다. 본 연구에서 WCC 코팅 및 구조 최적화를 통하여 기존의 D 인젝터의 0.06cc/min 누설성능을 0.04cc/min 수준 이하로 낮출 수 있었다.

EGR율 변화에 대한 액상 LPG분사 엔진의 운전 및 배출가스특성 (Performance and Emission Characteristics of Liquid-Phase LPG Injection Engine with Different EGR Rate)

  • 염기태;우영민;장진영;박용국;배충식
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.7-14
    • /
    • 2003
  • Exhaust Gas Recirculation (EGR) system is used to reduce NOx emission, to improve fuel economy, and to suppress knock since it offers the benefits of the inlet charge dilution. The effects of EGR was investigated on the performance and emission to reduce exhaust thermal load with a single cylinder liquid-phase LPG injection engine, in a wide range of EGR rate, engine conditions and LPG proportions. As EGR rate was increased, NOx was reduced while HC was increased. Pumping loss reduction by EGR improved bsfc and increased EGR lowered exhaust gas temperature. And, LPG proportions were made a difference on the performance and emission characteristics.

LPG액상분상엔진의 분사특성이 성능에 미치는 영향 (Effect of Injection Characteristics on Performance in a LPLi Engine)

  • 김창기;이진욱;강건용
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.46-52
    • /
    • 2004
  • An LPG engine (KL6i) for heavy duty vehicle has been developed using liquid phase LPG injection (LPLi) system, which has regarded as one of next generation LPG fuel supply systems. For the KL6i engine, lean burn technology was introduced to minimize the thermal loading and NOx emissions due to an increase of the engine power. In this work, injection timing and piston bowl shape were investigated for the stabilization of lean burn characteristics. Experimental results reveals that fuel stratification induced by these parameters is most effective strategy to extend lean combustion limit in the LPLi system.

  • PDF