• Title/Summary/Keyword: LPG 연료 성분

Search Result 14, Processing Time 0.028 seconds

Durability Properties of Liquid Phase LPG Injection System with Various Qualities of LPG Fuels (LPG연료품질에 따른 LPG액상분사방식의 내구특성연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-78
    • /
    • 2004
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system. To investigate the durability property of core part of injector in liquid phase LPG injection system, leakage test, SEM test of injectors and analysis of unvaporized fuel components with various LPG fuel qualities were tested. The experimental results showed that no serious problem in durability test using favorable LPG fuel quality, while high leakage amount due to the large scratches in the needle and nozzle of the injector were found using LPG fuel with highly containing olefin components, especially butadiene species.

The Effect of N-butane and Propane on Performance and Emissions of a SI Engine Operated with LPG/DME Blended Fuel (LPG/DME 혼합연료를 사용하는 전기점화 기관에서 LPG 성분이 엔진 성능 및 배기특성에 미치는 영향)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong;Choi, Won-Hak;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In this study, a spark ignition engine operated with LPG and DME blended fuel was studied experimentally. The effect of n-butane and propane on performance and emissions of a SI engine fuelled by LPG/DME blended fuel were examined. Stable engine operation was achieved for a wide range of engine loads with propane containing LPG/DME blended fuel compare to butane containing LPG/DME blended fuel since octane number of propane was much higher than that of butane. Also, engine output operated with propane containing blended fuel was comparable to pure LPG fuel operation. Engine output power was decreased and break specific fuel consumption (BSFC) was increased with the blended fuel since the energy content of DME was much lower than that of LPG. Considering the results of engine output power, bsfc, and exhaust emissions, the propane containing LPG/DME blended fuel could be used as an alternative fuel for LPG.

A Study on Characteristics of Residue in Liquefied Petroleum Gas using Automotive Fuel (자동차용 액화석유가스(LPG) 잔류물질의 특성 연구)

  • Jang, Yoon-mi;Park, Tae-seong;Kang, Hyung-kyu;Yim, Eui Soon;Lee, Jung-min;Na, Byung-gi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.816-825
    • /
    • 2018
  • Recently, it was emerged to need the necessity of LPG residues management due to the finding some substances such as rust. This study is performed to investigate the characteristics of LPG residues in the production and distribution stage of LPG. For the qualitative analysis of LPG residues, it was operated to be set up the analysis conditions(the flow rate, etc) of GC-MS and was performed to analyze the component of LPG residues. From the analysis result using GC-MS, it was shown that the component of LPG residues was turned out the plasticizer to be used in the rubber manufacturing process. The inorganic components of LPG residues were analyzed using ICP-OES. At the results of inorganic analysis, it was shown that the Si element was detected, which was presumably derived from defoamers used mainly in the LPG production. Also, the P and Zn element, which are estimated to be components of grease additives used for filling facilities, were also partially detected. No trace of rusting was detected in the LPG residues in the production and distribution stages analyzed in this study. But, as plasticizers and grease additives can affect to the LPG fuel system in vehicles, it will be necessary to use the proper quality of rubber and to expand the use of low boiling grease additives.

Determination Method of Hydrocarbon Compounds in DME-LPG Blending Fuels by Gas Chromatography with Deans Switching (Deans Switching을 이용한 가스크로마토그래피에서 DME-LPG 혼합연료의 탄화수소 화합물 분석방법)

  • Youn, Ju Min;Park, Cheon Kyu;Yim, Eui Soon;Jung, Choong Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.353-357
    • /
    • 2012
  • The new qualitative and quantitative analytical method for hydrocarbon compounds in DME-LPG blending fuel, mixing dimethyl ether (DME) with liquefied petroleum gas (LPG), by using gas chromatography (GC) was investigated. It is difficult to analyze all components of DME-LPG blending fuel by using single column in GC due to consisting of the non-polar LPG and the polar DME which is oxygen-containing compound. Therefore, it has been introduced the Deans switching system, which are useful for analyzing mixtures of a very different nature and/or target analytes in very complex matrix. This technique is to control the pressure between two columns and to selectively change the path of effluent flows to either one of two columns. As a result, we found that DME and LPG can be completely separated at the different columns and the determination of all hydrocarbon compounds in DME-LPG blending fuel can be achieved to this method qualitatively and quantitatively during the operation of one injection. In addition, this method can be applied to the determination of trace components of by-product, such as methanol, methyl formate and ethyl methyl ether, which will be derived from DME synthesis process.

A Study on the Combustion and Explosion Characteristics According to Mixing Ratio of Gas (가연성 가스의 혼합비에 따른 연소 및 폭발특성에 관한 연구)

  • Oh Kyu-hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.50-56
    • /
    • 2005
  • Liquefied Petroleum 6aso-PG) is combustible gas which used for fuel for domestic and automobiles. A research for adjust a component of LPG to improve the fuel characteristics and control the manufacturing process of that is carrying in petrochemical industry. Some kinds of LPG blending is considered as a adjusting method to control component of LPG. LPG is mainly propane for domestic use and butane for automobile use but propylene and butylene also a kind of LPG Change of explosion characteristic and combustion gas component by mixing of propylene in propane and butane was measured and analysed in this research. Based on the result of experiment, it was found that explosion pressure and pressure rise rate was slightly increased with mixing rate of propylene and it was considered the possibility of increasing the CO concentration in combustion gas with increase the mixing rate of propylene.

  • PDF

The Study on Knock Characteristics of Heavy Duty LPG Engine (대형 LPG 엔진의 노크 특성에 관한 연구)

  • 황승환;이정원;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.107-113
    • /
    • 2002
  • LPG has been well known as a clean alternative fuel for vehicles. Recently, several LPG engines for heavy duty vehicles have been developed, which can replace some diesel engines that are one of the main sources for air pollution in the urban area. Because cylinder bore of heavy duty LPG engine is larger than that of gasoline, the study of knock characteristics of LPG engine are needed. In this study, the knock characteristics were investigated with various engine speed, air excess ratios and LPG fuel compositions. Experimental results indicated that the Knock occurrence probability decreases with increasing engine speed and propane fraction of fuel. The Knock occurrence probability is highest at excess air ratio of 1 and decreases as the mixture strength became leaner.

Effects of Operation Conditions on Hydrocarbon Components Emitted from SI Engine with Gaseous Fuels (기체 연료를 사용한 전기점화기관에서 운전조건이 HC 배출물 성분에 미치는 영향)

  • 박종범;최희명;이형승;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.108-121
    • /
    • 1998
  • Using gas chromatography, the light hydrocarbon emissions were analyzed from SI engine fueled with methane and liquified petroleum gas(LPG), and the effects of fuel and engine operating condition were discussed. For this purpose, 14 species of light hydrocarbon including 1, 3-butadiene were separated, calibrated with standard gas, and measured from undiluted emissions. The brake specific hydrocarbon emission(BSHC) and ozone forming potential(BSO)3 were calculated and discussed with the changes of fuel, engine speed, load, fuel/air equivalence ratio, coolant temperature, and spark timing. As a result, exhaust emission was composed of mainly fuel composed of mainly fuel comp- onent and other olefin components of similar carbon number. The olefin components such as ethylene and propylene determine most of the ozone forming potential. The fraction of fuel component in total hydrocarbon emission was bigger with methane fuel than with LPG fuel. Also fuel fraction increased at high speed or high speed or high temperature of exhaust gas, and to lesser extent with high coolant temperature and retarded spark. However, the effect of equivalence ratio had different tendency according to fuels.

  • PDF

Mixing Characteristics of Sequential Blending with DME and LPG in Mixing Drum (DME-LPG 순차 혼합시 저장탱크 내의 혼합특성)

  • Cheon, Suk Hoon;Kim, Cha Hwan;Shin, Dong Woo;Kim, Lae Hyun;Lee, Hyun Chan;Baek, Young Soon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.464-470
    • /
    • 2012
  • To study characteristics of DME and Propane blended fuel in mixing drum as time passed, mixing experiment of two components was performed. After 20 wt% of DME and 80 wt% of Propane were injected into mixing drum sequentially, and the mixture ratio of blended fuel was analyzed at several sampling ports. Consequently, DME and Propane were not easily mixed and DME was sunk to the bottom of the mixing drum by the density difference. The daily rate of DME ingredient increase was 0.2-0.3 wt%, and it took over 500 hours until two of them were mixed uniformly. And after recirculation of blended fuel in mixing drum, DME and Propane were mixed immediately and uniformly.

Study on the Characterization of Oxidative Degradation of Automotive Gasoline (자동차용휘발유의 산화열화특성 규명 연구)

  • Min, Kyong-Il;Yim, Eui Soon;Jung, Chung-Sub;Kim, Jae-Kon;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.250-256
    • /
    • 2013
  • Gasoline generates organic acid and polymer (gum) by hydrocarbon oxidation depending on the storage environment such as temperature and exposure to sunlight, which can cause metal corrosion, rubber and resin degradation and vehicle malfunction caused by accumulation in fuel supply system. The gasoline which has not been used for a long time in bi-fuel (LPG-Gasoline) vehicle causes problems, and low octane number gasoline have evaporated into the field, but the exact cause has not been studied yet. In this study, we suggest a plan of quality management by investigating the gasoline oxidation behavior. In order to investigate the oxidation behavior of gasoline, changes of gasoline properties were analyzed at various storage conditions such as storage time, storage vessel type (vehicle fuel tank, PE vessel and Fe vessel) and storage circumstances (sunlight exposure and open system, etc.). Currently distributing gasoline and bioethanol blended fuel (blended 10%) were stored for 18 weeks in summer season. The sample stored in PE vessel was out of quality standard (octane number, vapor pressure, etc.) due to the evaporation of the high octane number and low boiling point components through the vessel cap and surface. Especially, the sunlight exposure sample stored in PE vessel showed rapid decrease of vapor pressure and increase of gum. Bioethanol blended fuel showed similar results as gasoline.