DOI QR코드

DOI QR Code

Study on the Characterization of Oxidative Degradation of Automotive Gasoline

자동차용휘발유의 산화열화특성 규명 연구

  • Min, Kyong-Il (Department of Chemical Engineering, Chungbuk National University) ;
  • Yim, Eui Soon (Green Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Jung, Chung-Sub (Green Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Kim, Jae-Kon (Green Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
  • 민경일 (충북대학교 화학공학과) ;
  • 임의순 (한국석유관리원 석유기술연구소) ;
  • 정충섭 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2012.10.19
  • Accepted : 2013.01.27
  • Published : 2013.04.01

Abstract

Gasoline generates organic acid and polymer (gum) by hydrocarbon oxidation depending on the storage environment such as temperature and exposure to sunlight, which can cause metal corrosion, rubber and resin degradation and vehicle malfunction caused by accumulation in fuel supply system. The gasoline which has not been used for a long time in bi-fuel (LPG-Gasoline) vehicle causes problems, and low octane number gasoline have evaporated into the field, but the exact cause has not been studied yet. In this study, we suggest a plan of quality management by investigating the gasoline oxidation behavior. In order to investigate the oxidation behavior of gasoline, changes of gasoline properties were analyzed at various storage conditions such as storage time, storage vessel type (vehicle fuel tank, PE vessel and Fe vessel) and storage circumstances (sunlight exposure and open system, etc.). Currently distributing gasoline and bioethanol blended fuel (blended 10%) were stored for 18 weeks in summer season. The sample stored in PE vessel was out of quality standard (octane number, vapor pressure, etc.) due to the evaporation of the high octane number and low boiling point components through the vessel cap and surface. Especially, the sunlight exposure sample stored in PE vessel showed rapid decrease of vapor pressure and increase of gum. Bioethanol blended fuel showed similar results as gasoline.

휘발유는 온도 및 햇빛 노출 등의 저장환경에 따라 산화에 의해 유기산 및 중축합 고분자 물질(검질)이 생성되어 금속재료의 부식과 고무수지 등의 열화 및 연료공급 시스템의 축적물로 남아 차량 문제를 유발시킬 수 있다. 최근에 LPG와 휘발유 겸용 차량에서 장기간 사용하지 않은 휘발유가 차량문제를 유발하거나, 옥탄가가 비이상적으로 낮은 연료들이 출현하고 있지만 명확한 원인규명이 되지 않은 상황이다. 이에, 휘발유의 산화에 대한 명확한 규명을 통해 저장환경, 품질변화 추정 등 관리방안을 제시하고자 하였다. 휘발유의 산화특성 규명을 위해 현재 유통되고 있는 자동차용 휘발유와 향후 보급가능 바이오에탄올 혼합연료(바이오에탄올 10%)에 대해 저장용기(차량 연료탱크, 폴리에틸렌(PE) 재질 및 철재 용기) 별, 저장환경(햇빛 노출(옥상), 햇빛 비노출(창고)), 대기 중 공기노출 등에 대한 산화열화 영향을 산화가 일어나기 쉬운 여름철(6월~10월)에 18주간 저장평가하여 실제 품질기준 항목에 미치는 영향을 분석하였다. 폴리에틸렌(PE) 재질 용기의 경우 마개 틈 또는 표면으로의 고옥탄가 저비점 성분의 증발로 옥탄가의 품질기준이 벗어나는 경우가 있었다. 특히 햇빛 노출의 상태에서는 휘발유 산화와 저비점 성분의 증발로 옥탄가 및 증기압이 급격히 감소하였고, 검(gum)질도 과량 생성되었다. 바이오에탄올 혼합연료도 유사한 결과를 나타내었다.

Keywords

References

  1. Ministry of Knowledge and Economy report, "Statistics of Energy Industry in Korea," (2012).
  2. Jeong, K. T., "Lubricant and Lubrication Control," Korea Testing Certification report (1991).
  3. Waynick, J. A., "Characterization of Biodiesel Oxidation and Oxidation Products," NREL Publishers, CRC Project No. AVFL- 2b (2005).
  4. Kivevele, T. T., Mbarawa, M. M., Bereczky, A. and Zoldy, M., "Evaluation of the Oxidation Stability of Biodiesel Produced from Moringa Oleifera Oil," Energ. Fuel., 25, 5416-5421(2011). https://doi.org/10.1021/ef200855b
  5. Conceiao, M. M., Fernandes, V. J., Araujo, A. S., Farias, M. F., Santos, I. M. G. and Souza, A. G., "Thermal and Oxidative Degradation of Castor Oil Biodiesel," Energ. Fuel., 21, 1522-1527 (2007). https://doi.org/10.1021/ef0602224
  6. Abe, Y., Toba, M., Mochizuki, T. and Yoshimura, Y., "Oxidative Degradation Behavior of Fatty Acid Methyl Ester in Fish Oil Biodiesel and Improvement of Oxidation Stability by Partial Hydrogenation," J. Jpn. Petrol. Inst., 52(6), 307-315(2009). https://doi.org/10.1627/jpi.52.307
  7. Jung, C. S., Lee, Y. J. and Dong, J. I., "Life Time Estimation of Biodiesel and Biodiesel Blend Fuel from the Oxidation Stability Analysis," New & Renewable Energy, 3(2), 17-23(2007).
  8. Walters, E. L., Yabroff, D. L. and Minor, H. B., "Correlation of Predicted and Observed Storage Stability of Cracked Gasoline," Ind. Eng. Chem. Res., 40(3), 423-428(1948). https://doi.org/10.1021/ie50459a014
  9. Walters, E. L., Minor, H. B. and Yabroff, D. L., "Chemistry of Gum Formation in Cracked Gasoline," Ind. Eng. Chem. Res., 41(8), 1723-1729(1948).
  10. Pereira, R. C. C. and Pasa, V. M. D., "Effect of Mono-Olefins and Diolefins on the Stability of Automotive Gasoline," Fuel., 85, 1860-1865(2006). https://doi.org/10.1016/j.fuel.2006.01.022
  11. Yim, E. S. and Kim, J. G., "A Study on Gasoline Properties According to the Storage Vessel," K-PETRO Publishers(2008).
  12. Jeong, J. S., Jang, B. U., Kim, Y. R., Chung, B. W. and Choi, G. W., "Production of Dehydrated Fuel Ethanol by Pressure Swing Adsorption Process in the Pilot Plant," Korean J. Chem. Eng., 26, 1308-1312(2009). https://doi.org/10.2478/s11814-009-0226-3
  13. Lee, M. D., Lee, I. C. and Chun, H. D., "Analysis of Domestic Gasolines by Gas Chromatography-Mass Spectrometer," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 20, 401-414(1982).
  14. Yeh, J. T., Jou, W. S. and Su, Y. S., "Permeation Barrier Properties of Polyethylene/Modified Blends of Polyamide and Polyvinyl-alcohol Containers Against Methanol/Gasoline Fuels," J. App. Polym. Sci, 74, 2158-2169(1999). https://doi.org/10.1002/(SICI)1097-4628(19991128)74:9<2158::AID-APP6>3.0.CO;2-7
  15. Yeh, J. T., Huang, S. S. and Yao, W. H., "Gasoline Permeation Resistance of Containers of Polyethylene, Polyethylene/Modified Polyamide and Polyethylene/Blends of Modified Polyamide and Ethylene Vinyl Alcohol," Macromol. Mater. Eng., 287, 532-538 (2002). https://doi.org/10.1002/1439-2054(20020801)287:8<532::AID-MAME532>3.0.CO;2-F
  16. Jain, S. and Sharma, M. P., "Correlation Development for the Effect of Metal Contaminants on the Thermal Stability of Jateropha Curcas Biodiesel," Energ. Fuel., 25, 1276-1283 (2001).
  17. Santos, N. A., Damasceno, S. S., deAraujo, P. H. M., Marques, V. C., Rosehhaim, R., Fernandes, V. J., Queiroz, N., Santos, I. M. G., Maia, A. S. and Souza, A. G., "Caffeic Acid: An Efficient Antioxidnat for Soybean Biodiesel Contaminated with Metals," Energ. Fuel., 25, 4190-4194(2011). https://doi.org/10.1021/ef200869v
  18. Pereira, R. C. C. and Pasa, V. M. D. "Effect of Alcohol and Copper Content on the Stability of Automotive Gasoline," Energ. Fuel., 19, 426-432(2005). https://doi.org/10.1021/ef049849h
  19. Yim, E. S. and Min, K. I., "Actual Assessment to Introduce Bio- Ethanol Blended Fuel," MKE Publishers(2008).

Cited by

  1. Properties of Gasoline Stored in Various Containers vol.10, pp.9, 2017, https://doi.org/10.3390/en10091307