• Title/Summary/Keyword: LPG(Liquefied Petroleum Gas)

Search Result 144, Processing Time 0.032 seconds

LPG-DME Compression Ignition Engine with Intake Variable Valve Timing (LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

A Study on the Performance of an LPG (Liquefied Petroleum Gas) Engine Converted from a Compression Ignition Engine

  • Choi, Gyeung-Ho;Kim, Tae-Kwon;Cho, Ung-Lae;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.1-6
    • /
    • 2007
  • The purpose of this study was to investigate the reduction of exhaust gas temperature in a LPG engine that had been converted from a diesel engine. A conventional diesel engine was modified to a LPG (Liquefied Petroleum Gas) engine by replacing the diesel fuel injection pump with a LPG fuel system. The research was performed by measuring the exhaust gas temperature upon varying spark ignition timing, airfuel ratio, compression ratio, and different compositions of butane and propane. Engine power and exhaust temperature were not influenced by various butane/propane fuel compositions. Finally, among the parameters studied in this investigation, spark ignition timing is one of the most important in reducing exhaust gas temperature.

The use of liquefied petroleum gas (lpg) and natural gas in gas turbine jet engines

  • Koc, Ibrahim
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • This paper compares the performance of JP-8(Jet Propellant) fuel and liquefied petroleum gas (LPG) and natural gas in the F110 GE100 jet engine. The cost of natural gas usage in gas turbine engines is lower than JP-8 and LPG. LPG cost is more than JP-8. LPG volume is bigger than JP-8 in the same flight conditions. Fuel tank should be cryogenic for using natural gas in the aircraft. Cost and weight of the cryogenic tanks are bigger. Cryogenic tanks decrease the move capability of the aircraft. The use of jet propellant (JP) is the best in available application for F110 GE 100 jet engine.

Performance and Emissions Characteristics of a Converted Liquefied Petroleum Gas (LPG) Engine with Mixer and Liquid Propane Injection (LPi) System

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Chung, Yon-Jong;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.187-193
    • /
    • 2005
  • In this study, the performance and emission characteristics of a liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system. A compression ratio of 21 for the base diesel engine, was modified to 8, 8.5, 9 and 9.5. The engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficienry, CO, THC and NOx. Experimental results showed that the LPi system generated higher power and lower emissions than the conventional mixer fuel supply method.

Top-Feed Type Port Fuel Injector for Liquefied Petroleum Gas Liquid Phase Injection (Top-Feed Type 인젝터의 액상분사 LPG연료 분사장치 적용)

  • Yeom, Ki-Tae;Park, Jung-Seo;Bae, Choong-Sik;Park, Jeong-Nam;Kim, Sung-Kun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.30-37
    • /
    • 2007
  • The injection and spray characteristics of top-feed type injector was investigated under liquid phase injection fueled with liquefied petroleum gas (LPG). Different pressures and temperatures of fuel injection system were tested to identify the injection characteristics after hot soaking. MIE-scattering technique was used for verification of successful liquid phase injection after hot soaking. In case of bottom-feed type injector, the injection was accomplished at every experimental condition. In case of top-feed type injector, when the pressure of LPG was over 1.2 MPa, the injection was not executed. However, under the pressure were 1.2 MPa, the liquid phase injection after hot soaking was accomplished. The engine with top-feed type fuel injection equipment was restarted successfully after hot soaking.

A Study on the Exhaust Emissions Characteristics of LPG Vehicle using LPG Fuel with Sulfur Free Odorant (비황분계 부취제를 혼합한 LPG 연료의 차량 배출가스 특성에 관한 연구)

  • Kim, Jae-Kon;Lee, Ho-Kil;Yim, Eui Soon;Jung, Choong-Sub
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.545-554
    • /
    • 2014
  • In general, odorant was added to fuel gases, such as LPG, LNG and city gas, to prevent gas poisoning, ignition, explosion, or other accident caused by fuel gases, and to enable immediate and easy detection of fuel-gas leakage by emitting an offensive smell. This study describes a study on the exhaust emissions characteristics and fuel economy of liquefied petroleum gas (LPG) vehicle using LPG fuel with new sulfur free odorant. New sulfur free odorant was added to LPG to reduce sulfur content of the LPG. Its performance and exhaust emission were compared to those of LPG with sulfur containing odorant (EM, ethyl mercaptan). Engine performance using LPG with sulfur free odorant was similar to that with sulfur-containing odorant. Exhaust emissions from the LPG vehicle with LPG including sulfur free odorant were also similar to those with LPG including sulfur containing odorant in the FTP 75 and NEDC mode. There experimental results suggest that the sulfur free odorant may substitute for the sulfur containing odorant in LPG fuel.

Determination Method of Hydrocarbon Compounds in DME-LPG Blending Fuels by Gas Chromatography with Deans Switching (Deans Switching을 이용한 가스크로마토그래피에서 DME-LPG 혼합연료의 탄화수소 화합물 분석방법)

  • Youn, Ju Min;Park, Cheon Kyu;Yim, Eui Soon;Jung, Choong Sub
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.353-357
    • /
    • 2012
  • The new qualitative and quantitative analytical method for hydrocarbon compounds in DME-LPG blending fuel, mixing dimethyl ether (DME) with liquefied petroleum gas (LPG), by using gas chromatography (GC) was investigated. It is difficult to analyze all components of DME-LPG blending fuel by using single column in GC due to consisting of the non-polar LPG and the polar DME which is oxygen-containing compound. Therefore, it has been introduced the Deans switching system, which are useful for analyzing mixtures of a very different nature and/or target analytes in very complex matrix. This technique is to control the pressure between two columns and to selectively change the path of effluent flows to either one of two columns. As a result, we found that DME and LPG can be completely separated at the different columns and the determination of all hydrocarbon compounds in DME-LPG blending fuel can be achieved to this method qualitatively and quantitatively during the operation of one injection. In addition, this method can be applied to the determination of trace components of by-product, such as methanol, methyl formate and ethyl methyl ether, which will be derived from DME synthesis process.

Compressed Natural Gas Bus & Liquefied Petroleum Gas Vehicle (압축천연가스(CNG)버스와 액화석유가스(LPG)자동차)

  • 윤재건
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.3
    • /
    • pp.28-32
    • /
    • 2001
  • Using the CNG(compressed natural gas) and LPG(liquified petroleum gas) as the automotive fuel will be expanded because of their clean effect to the environmental air qualify. But these programs of gas using expansion would have a difficulty due to public consideration of gas utilities as a big hazard. The Ministry of Environment has an ambitious plan to substitute more than 25,000 buses with CNG and ensure more than 200 CNG refueling stations as well by the year of 2007. However, it is very difficult to establish new CNG and LPG refueling stations because of expanded safety distance than ever before by several major explosion accidents.

  • PDF

Influence of Compression Ratio on Engine Performance in a LPG Engine Converted from a Diesel Engine (디젤엔진을 개조한 LPG엔진의 기관성능에 미치는 압축비의 영향)

  • Choi Gyeung Ho;Kim Jin Ho;Chung Yon Jong;Han Sung Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1178-1183
    • /
    • 2004
  • The purpose of this study was to investigate the influence of compression ratio on engine performance in a LPG(Liquefied Petroleum Gas) engine converted from a diesel engine. In ordor to determine the ideal compression ratio, a variable compression ratio 4-cylinder engine was developed. Retrofitting a diesel engine into a LPG engine is technically very complicated compared to a gasoline to LPG conversion. The cylinder head and the piston crown were modified to bum LPG in the engine. Compression ratios were increased from 8 to 10 in an increment of 0.5, the ignition timing was controlled to be at MBT(Minimum Spark Advance for Best Torque) for each case.