• Title/Summary/Keyword: LOS path

Search Result 92, Processing Time 0.02 seconds

Joint Bandwidth Allocation and Path Selection Scheme for Uplink Transmission in IEEE 802.16j Networks with Cooperative Relays (협력 중계를 이용한 IEEE 802.16j 네트워크를 위한 상향 링크에서의 통합 대역 할당 및 경로 선택 기법)

  • Hwang, Ho-Young;Lee, Hyuk-Joon;Jeong, In-Gun;Jung, In-Sung;Roh, Bong-Soo;Park, Gui-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.64-77
    • /
    • 2013
  • In this paper, we propose a joint bandwidth allocation and path selection scheme for IEEE 802.16j networks in uplink with cooperative relaying, and we evaluate the performance of the proposed scheme by using OPNET based simulation in hilly terrain with heavy tree density. The proposed scheme maximizes the system throughput in uplink with cooperative relaying in IEEE 802.16j networks. Then, we transform the proposed scheme into multi-dimensional multiple choice knapsack problem (MMKP) based scheme. We also propose uplink throughput maximization scheme and MMKP based scheme without cooperative relaying. We show that the system throughput of the proposed MMKP based scheme is higher than that of link quality based scheme, and cooperative relaying provides higher system throughput than the conventional case without cooperative relaying in uplink.

Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning

  • Lu, Yu-Sheng;Lai, Chin-Feng;Hu, Chia-Cheng;Huang, Yueh-Min;Ge, Xiao-Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2010
  • Rapid developments in wireless sensor networks have extended many applications, hence, many studies have developed wireless sensor network positioning systems for indoor environments. Among those systems, the Global Position System (GPS) is unsuitable for indoor environments due to Line-Of-Sight (LOS) limitations, while the wireless sensor network is more suitable, given its advantages of low cost, easy installation, and low energy consumption. Due to the complex settings of indoor environments and the high demands for precision, the implementation of an indoor positioning system is difficult to construct. This study adopts a low-cost positioning method that does not require additional hardware, and uses the received signal strength (RSS) values from the receiver node to estimate the distance between the test objects. Since many objects in indoor environments would attenuate the radio signals and cause errors in estimation distances, knowing the path loss exponent (PLE) in an environment is crucial. However, most studies preset a fixed PLE, and then substitute it into a radio propagation loss model to estimate the distance between the test points; such method would lead to serious errors. To address this problem, this study proposes a Path Loss Exponent Estimation Algorithm, which uses only four beacon nodes to construct a radio propagation loss model for an indoor environment, and is able to provide enhanced positioning precision, accurate positioning services, low cost, and high efficiency.

Adaptive Learning Path Recommendation based on Graph Theory and an Improved Immune Algorithm

  • BIAN, Cun-Ling;WANG, De-Liang;LIU, Shi-Yu;LU, Wei-Gang;DONG, Jun-Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2277-2298
    • /
    • 2019
  • Adaptive learning in e-learning has garnered researchers' interest. In it, learning resources could be recommended automatically to achieve a personalized learning experience. There are various ways to realize it. One of the realistic ways is adaptive learning path recommendation, in which learning resources are provided according to learners' requirements. This paper summarizes existing works and proposes an innovative approach. Firstly, a learner-centred concept map is created using graph theory based on the features of the learners and concepts. Then, the approach generates a linear concept sequence from the concept map using the proposed traversal algorithm. Finally, Learning Objects (LOs), which are the smallest concrete units that make up a learning path, are organized based on the concept sequences. In order to realize this step, we model it as a multi-objective combinatorial optimization problem, and an improved immune algorithm (IIA) is proposed to solve it. In the experimental stage, a series of simulated experiments are conducted on nine datasets with different levels of complexity. The results show that the proposed algorithm increases the computational efficiency and effectiveness. Moreover, an empirical study is carried out to validate the proposed approach from a pedagogical view. Compared with a self-selection based approach and the other evolutionary algorithm based approaches, the proposed approach produces better outcomes in terms of learners' homework, final exam grades and satisfaction.

Performance Analysis of Low Earth Orbit Satellite Communication Systems Under Multi-path Fading Environments (다중경로 페이딩 환경하에서의 저궤도 위성통신시스템 성능 분석)

  • Hae-uk Lee;Young-bin Ryu;Hyuk-jun Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.410-416
    • /
    • 2023
  • Unlike geostationary satellite communication systems, low-earth orbit(LEO) satellite communication systems move at relatively high speeds, and the angle with the ground device is not fixed and varies over a wide range. The propagation channel condition between satellites and ground nodes cannot be assumed line of sight(LOS) anymore. This paper analyzes the low-orbit multi-path fading satellite channel model that can occur in LEO satellite communication systems and Doppler frequency transition caused by high-speed maneuvering of LEO satellites and presents effective equalization techniques for OFDM and SC-FDE transmission methods suitable for multi-path frequency selective fading satellite channel models. In addition, this paper compares and analyzes the performance of OFDM and SC-FDE transmission methods in multipath fading LEO satellite channel environment using the proposed equalization techniques through simulations. Simulation results showed that SC-FDE outpeformed OFDM.

Estimation of Microwave Path Loss and Cross-Polarization Coupling in a Simple Urban Area

  • Yisok Oh;No, Chan-Ho;Sung, Hyuk-Je;Lee, Byung-Hoon;Koo, Yeon-Geon
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • Whereas it is well known that microwave propagation around corners of urban area is estimated well by the uniform geometrical theory of diffraction (UTD), it is not clear how much depolarization occurs at a given receiver position and how much transmission through walls affects to total path loss. This paper presents the results of the ray tracing simulation to answer these questions. Simulations of microwave propagation around corners were performed for various line-of-sight (LOS) and out-of-sight(OOS) positions of a receiver, by summing the electrical fields of reflected, diffracted and transmitted rays coherently. Since height difference between transmitter and receiver, as well as ground plane, causes depolarization, the ray tracing simulation estimates the cross-polarization coupling. It was found that the cross-polarization coupling decreases as receiver moves away from transmitter. Another part of the study focused on the signal transmitted through building walls of the corner. It was found that the transmitted field is dominant at OOS region when the conductivity of the walls is low (for example, lower than 0.0l S/m). The simulation results of the ray tracing technique in this study agreed well with an experimental measurement around corners.

  • PDF

Effectiveness of a Clinical Pathway for Breast Cancer Patients Undergoing Surgical Operation on Clinical Outcomes and Costs

  • Jeong Hyun Park;Danbee Kang;Seok Jin Nam;Jeong Eon Lee;Seok Won Kim;Jonghan Yu;Byung Joo Chae;Se Kyung Lee;Jai Min Ryu;Yeon Hee Park;Mangyeong Lee;Juhee Cho
    • Quality Improvement in Health Care
    • /
    • v.30 no.1
    • /
    • pp.120-131
    • /
    • 2024
  • Purpose: This study aimed to evaluate the impact of implementing a clinical pathways (CPs) on the clinical outcomes and costs of patients undergoing breast cancer surgery. Methods: This retrospective cohort study included patients who were newly diagnosed with primary breast cancer at the Samsung Medical Center between 2014 and 2019 (N=8482; 2931 patients in the pre-path and 5551 patients in the post-path). Clinical outcomes included reoperation during hospitalization, readmission, and emergency room visits within 30 days of discharge. The cost data for each unit were obtained from an activity-based management accounting system. We performed an interrupted time series analysis. Results: The post-path period showed a significantly shorter hospital length of stay (LOS) than the pre-path period (6.3 days in pre-path vs. 5.0 days in post-path; -1.3 days' difference; p=.001), and fewer reoperations during hospitalization and within 30 days after discharge than the pre-path period. After adjusting for inflation rates and relative value scores, the model demonstrated savings of $146 per patient in the post-path for total costs, and $537 per patient for patient out-of-pocket costs (p=.001). Conclusion: CPs can help reduce costs without compromising the quality of care by reducing the number of reoperations, readmissions, and complications.

Resolution in Carrier Profiling Semiconductors by Scanning Spreading Resistance Microscopy and Scanning Frequency Comb Microscopy

  • Hagmann, Mark J.;Mousa, Marwan S.;Yarotski, Dmitry A.
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.95-100
    • /
    • 2017
  • High resolution measurements of the carrier profile in semiconductor devices is required as the semiconductor industry progresses from the 10-nm lithography node to 7-nm and beyond. We examine the factors which determine the resolution of the present method of scanning spreading resistance microscopy as well as such factors for the newer method of scanning frequency comb microscopy that is now under development. Also, for the first time, we consider the sensitivity of both methods to the location of heterogeneities in the semiconductor. In addition, mesoscopic effects on these measurements are considered for the first time. Two simple analytical models are extended to study the sensitivity to heterogeneities as well as mesoscopic effects.

Implementation of Walfish-Ikegami Propagation Model in Wibro System (Wibro System에서의 Walfish-Ikegami 전파모델의 구현 및 검증)

  • Shin, Young-Il;Jung, Hyun-Meen;Lee, Seong-Choon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.337-338
    • /
    • 2008
  • In this paper, propagation analysis method in using Walfish-Ikegami propagation model in wireless cell planning is proposed. Through Walfish-Ikegami model, we can predict the distribution of propagation loss of the received signal. For correct and low complex analysis, quick LOS search method and path loss offset calibration using measured data are included in Walfish-Ikegami model. In CellTREK that is developed by KT, it is showed that the proposed model outperforms Modified HATA model when comparing with measured data in Wibro system.

  • PDF

Adaptive Modulation Method using Non-Line-of-Sight Identification Algorithm in LDR-UWB Systems

  • Ma, Lin Chuan;Hwang, Jae-Ho;Choi, Nack-Hyun;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1177-1184
    • /
    • 2008
  • Non-line-of-sight (NLOS) propagation can severely weaken the accuracy of ranging and localization in wireless location systems. NLOS bias mitigation techniques have recently been proposed to relieve the NLOS effects, but positively rely on the capability to accurately distinguish between LOS and NLOS propagation scenarios. This paper proposes an energy-capture-based NLOS identification method for LDR-UWB systems, based on the analysis of the characteristics of the channel impulse response (CIR). With this proposed energy capture method, the probability of successfully identifying NLOS is much improved than the existing methods, such as the kurtosis method, the strongest path compare method, etc. This NLOS identification method can be employed in adaptive modulation scheme to decrease bit error ratio (BER) level for certain signal-to-noise ratio (SNR). The BER performance with the adaptive modulation can be significantly enhanced by selecting proper modulation method with the knowledge of channel information from the proposed NLOS identification method.

Performance Analysis of IEEE P802.15.3a Multi-band UWB Transceiver for DAC Quantization Error in Fading Channel (다중경로 페이딩 채널에서 DAC 양자화 오차에 대한 IEEE P802.15.3a 멀티밴드 UWB 송수신기 성능 분석)

  • 정성원;이승윤;임승호;박규호
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.216-219
    • /
    • 2003
  • In this paper, we present performance analysis of an IEEE P802.15.3a high rate wireless personal area network transceiver. This physical layer standard uses QOSK as its sub-channel modulation scheme and orthogonal frequency domain modulation (OFDM) for sub-bands. OFDM is used for each sub-band so that multi-path effects are absorbed by equalizer and guard, and fading can be approximately modeled as additive white Gaussian noise. In multi-band ultra-wideband system, DAC quantization error is important noise source since high resolution conversion cannot be used due to high power consumption. Simulation result shows that, to get 640-Mbps throughput, at least 5-bits precision is necessary to maintain bit-error rate under 10$\^$-2/, which can be lowered, with channel coding, to 10$\^$-6/ that is the bit-error rate required by IEEE 802.15 upper protocol layer, in 4-meter LOS fading channel.

  • PDF