• Title/Summary/Keyword: LOS algorithm

Search Result 108, Processing Time 0.029 seconds

RF Seeker LOS Rate Estimation Method using Covariance and Signal Management (공분산 및 신호관리를 이용한 RF탐색기 시선각 변화율 추정기법)

  • Moon, Gwan-Young;Jun, Byung-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.292-299
    • /
    • 2012
  • The line-of-sight(LOS) rate is estimated using Kalman filter in Radio-Frequency(RF) seeker. For the two axis gimbaled seeker, proper system modeling is considered and the basic filter structure is set up. The main issue for Kalman filter is choosing the proper process and measurement noise. For the measurement process, the signal to noise ratio(SNR) and other components are introduced. To cope with the eclipse problem or other abnormal seeker status, the pseudo input signal concept is proposed. By conditioning abnormal signals, the LOS rate estimation performance is increased. The process noise is also an important factor in the propagation phase. The analytical approach on a process noise component is performed and a reliable region for the filter is calculated based on the eigenvalue analysis. Some numerical simulations are performed to check the validity of suggested algorithm.

Prediction and measurement of propagation path loss in indoor microcellular environments (실내 마이크로셀 환경에서 전파 경로손실의 예측과 측정)

  • 정백호;김채영;이숭복
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.1-8
    • /
    • 1997
  • A prediction model is proposed to describe the path loss in propagation environment of indoor microcell. This model includes the lineal corridor for line--of-sight(LOS) and T-shaped corridor for non-line-of-sight(NLOS). In computation of receiving power the ray tracing technique based on image method is utilized and also reflected waves bounced on the walls and ceilings are considered. To check validity of the computed resuls cross checks between the predicted and measured are being made, which shows a close agreement for LOS case whereas somewhat disagreement for NLOS case. UTD technique is incorporated with propagation path determination algorithm in the treatment of NLOS case.

  • PDF

An Effect of the Inertia Balancer in a Sight Stabilization System (조준경 안정화장치에서 관성밸런서의 영향)

  • 강윤식;김도종;박용운;김광준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1028-1032
    • /
    • 1996
  • Stabilization performance of a sight stabilization system can be improved by proper selection of control algorithm and mechanism. In that aspect, in this paper, effects of an inertia balancer are studied. Parameters of the inertia balancer were obtained from the governing equation by assuming there is no external force and friction. Simulation and experimental results show that the inertia balancer contributes significantly to the stabilization of the line of sight(LOS). In particular, it was found that the inertia balancer is more effective as frequency of the disturbance increases.

  • PDF

Spatial Characterization of MAC, a High-Resolution Optical Earth Observation Camera for Small Satellites

  • Kim Eugene D.;Choi Young-Wan;Yang Ho-Soon;Ismail Mohd. Afiq bin
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.79-83
    • /
    • 2005
  • Spatial calibrations have been performed on the Medium-sized Aperture Camera (MAC) of the RazakSAT satellite. Topics discussed in this paper include the measurements of system modulation transfer function (MTF), relative pixel line-of-sight (LOS), and end-to-end imaging tests. The MTF measurements were made by capturing the scanned knife-edge image on a pixel, and an issue in the MTF calculation algorithm is discussed. The method used to place the focal plane at the correct focal position is described, since they make use of MTF measurements. Relative LOS measurements are done by theodolite measurements of the telescope. Qualitative ground test result of end-to-end imaging is given.

A Modified Weighted Least Squares Approach to Range Estimation Problem (보완 가중 최소자승기법을 이용한 피동거리 추정필터 설계)

  • Whang, Ick-Ho;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2088-2090
    • /
    • 2003
  • A practical recursive weighted least square(WLS) solution is proposed to solve the passive ranging problem. Apart from the previous works based on the extended Kalman filter(EKF), to ensure the convergency at long-range, the proposed scheme makes use of line-of-sight(LOS) rate instead of bearing information. The influence of LOS rate measurement errors is investigated and it is asserted that the WLS estimates contain bias and scale factor errors. Together with simple compensation algorithm, the estimation errors of proposed filter can be reduced dramatically.

  • PDF

Performance Analysis of Compensation Algorithm for Localization using Equivalent Distance Rate (균등거리비율을 적용한 위치인식 보정 알고리즘 설계 및 성능분석)

  • Kwon, Seong-Ki;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1248-1253
    • /
    • 2010
  • In this paper, the compensation algorithm for localization using the concept of equivalent distance rate(AEDR) in order to compensate ranging error in the SDS-TWR(Symmetric Double-Sided Two-Way Ranging) is proposed and the performance of the proposed algorithm is analyzed by the localization experiments. The ranging error of the SDS-TWR in the distance between mobile node and beacon node is measured to average 1m~8m by ranging experiments. But it is confirmed that the performance of the localization by the AEDR is better than that of the SDS-TWR 4 times in university auditorium and corridor, and the localization error of above 3~10m is reduced to average 2m and that of below 3m is reduced to average 1m respectively. It is concluded that the AEDR is superior to the NLOS(Non Line Of Sight) than LOS(Line Of Sight) in performance of ranging compensation for localization, and the AEDR is more helpful to localization systems practically considering the environment of sensor networks is under NLOS.

An Improved Guidance Algorithm for Smooth Transition at Way-Points in 3D Space for Autonomous Underwater Vehicles

  • Subramanian, Saravanakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • This paper presents an improved guidance algorithm for autonomous underwater vehicles (AUV) in 3D space for generating smoother vehicle turn during the course change at the way-points. The way-point guidance by the line-of-sight (LOS) method has been modified for correcting the reference angles to achieve minimal calculation and smoother transition at the way-points. The algorithm has two phases in which the first phase brings the vehicle to converge to a distance threshold point on the line segment connecting the first two way-points and the next phase generates an angular path with smoother transition at the way-points. Then the desired angles are calculated from the reference and correction angles. The path points are regularly parameterized in the spherical coordinates and mapped to the Cartesian coordinates. The proposed algorithm is found to be simple and can be used for real time implementation. The details of the algorithm and simulation results are presented.

Performance Analysis of Location Estimation Algorithm Using an Enhanced Decision Scheme for RTLS

  • Lee Hyun-Jae;Jeong Seung-Hee;Oh Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.397-401
    • /
    • 2006
  • In this paper, we proposed a high precision location estimation algorithm using an enhanced decision scheme for RTLS and analyzed its performance in point of an average estimation error distance at 2D coordinates searching area, $300m\times300m$ and LOS propagation environments. Also the performance was compared with that of conventional TDOA algorithm according to the number of available reader and received sub-blink. From the results, we confirmed that the proposed location estimation algorithm using an enhanced decision scheme was able to improve an estimation accuracy even in boundary region of searching area. Moreover, effectively reduced an error distance in entire searching area so that increased the stability of location estimation in RTLS. Therefore, we verified that the proposed algorithm provided a more higher estimation accuracy and stability than conventional TDOA.

  • PDF

Analysis on Line-Of-Sight (LOS) Vector Projection Errors according to the Baseline Distance of GPS Orbit Errors (GPS 궤도오차의 기저선 거리에 따른 시선각 벡터 투영오차 분석)

  • Jang, JinHyeok;Ahn, JongSun;Bu, Sung-Chun;Lee, Chul-Soo;Sung, SangKyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.310-317
    • /
    • 2017
  • Recently, many nations are operating and developing Global Navigation Satellite System (GNSS). Also, Satellite Based Augmentation System (SBAS), which uses the geostationary orbit, is operated presently in order to improve the performance of GNSS. The most widely-used SBAS is Wide Area Augmentation System (WAAS) of GPS developed by the United States. SBAS uses various algorithms to offer guaranteed accuracy, availability, continuity and integrity to its users. There is algorithm for guarantees the integrity of the satellite. This algorithm calculates the satellite errors, generates the correction and provides it to the users. The satellite orbit errors are calculated in three-dimensional space in this step. The reference placement is crucial for this three-dimensional calculation of satellite orbit errors. The wider the reference placement becomes, the wider LOS vectors spread, so the more the accuracy improves. For the next step, the regional features of the US and Korea need to be analyzed. Korea has a very narrow geographic features compared to the US. Hence, there may be a problem if the three-dimensional space method of satellite orbit error calculation is used without any modification. This paper suggests a method which uses scalar values to calculate satellite orbit errors instead of using three-dimensional space. Also, this paper proposes the feasibility for this method for a narrow area. The suggested method uses the scalar value, which is a projection of orbit errors on the LOS vector between a reference and a satellite. This method confirms the change in errors according to the baseline distance between Korea and America. The difference in the error change is compared to present the feasibility of the proposed method.

An Evaluation Technique for the Path-following Control Performance of Autonomous Surface Ships (자율운항선박의 항로추정성능 평가기법 개발에 관한 연구)

  • Daejeong Kim;ChunKi Lee;Jeongbin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.10-17
    • /
    • 2023
  • A series of studies on the development of autonomous surface ships have been promoted in domestic and foreign countries. One of the main technologies for the development of autonomous ships is path-following control, which is closely related to securing the safety of ships at sea. In this regard, the path-following performance of an autonomous ship should be first evaluated at the design stage. The main aim of this study was to develop a visual and quantitative evaluation method for the path-following control performance of an autonomous ship at the design stage. This evaluation technique was developed using a computational fluid dynamics (CFD)-based path-following control model together with a line-of-sight (LOS) guidance algorithm. CFD software was utilized to visualize waves around the ship, performing path-following control for visual evaluation. In addition, a quantitative evaluation was carried out using the difference between the desired and estimated yaw angles, as well as the distance difference between the planned and estimated trajectories. The results demonstrated that the ship experienced large deviations from the planned path near the waypoints while changing its course. It was also found that the fluid phenomena around the ship could be easily identified by visualizing the flow generated by the ship. It is expected that the evaluation method proposed in this study will contribute to the visual and quantitative evaluation of the path-following performance of autonomous ships at the design stage.