• Title/Summary/Keyword: LOQ

Search Result 468, Processing Time 0.038 seconds

Development and Validation of an Official Analytical Method for Determination of Ipfencarbazone in Agricultural Products using GC-ECD (GC-ECD를 이용한 농산물 중 Ipfencarbazone의 신규분석법 개발 및 검증)

  • Jang, Jin;Kim, Heejung;Lee, Eun-Hyang;Ko, Ah-Young;Ju, Yunji;Kim, Sooyeon;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.210-217
    • /
    • 2015
  • Ipfencarbazone is a herbicide of the tetrazolinone class, and is believed to be an inhibitor of very long chain fatty acids (VLCFAs), which control cell division in weeds. The objective of this study was to develop and validate an official analytical method for ipfencarbazone determination in agricultural products. The ipfencarbazone residues in agricultural products were extracted with acetone, partitioned with n-hexane, and then purified through silica SPE cartridge. Finally, the analyte was quantified by gas chromatograph-electron capture detector (GC-ECD) and confirmed with gas chromatograph/mass spectrometer(GC/MS). The linear range of ipfencarbazone was 0.01 to 1.0 mg/L with the coefficient of determination ($r^2$) of 0.9999. The limit of detection (LOD) and quantification (LOQ) was 0.003 and 0.01 mg/kg, respectively. In addition, average recoveries of ipfencarbazone ranged from 80.6% to 112.3% at the different concentration levels LOQ, 10LOQ and 50LOQ, while the relative standard deviation was 2.2-8.6%. All values were consistent with the criteria ranges requested in the CODEX guidelines. Furthermore, and inter-laboratory study was conducted to validate the method. This proposed method for determination of ipfencarbazone residues in agricultural products can be used as an official analytical method.

Development of an Official Analytical Method for Determination of Aclonifen in Agricultural Products Using GC-ECD (GC-ECD를 이용한 농산물 중 제초제 aclonifen의 공정분석법 확립)

  • Ko, Ah-Young;Kim, Hee-Jung;Jang, Jin;Lee, Eun-Hyang;Joo, Yoon-Ji;Kwon, Chan-Hyeok;Son, Young-Wook;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.388-394
    • /
    • 2014
  • BACKGROUND: Aclonifen is used as a systemic and selective herbicide to control a wide spectrum broad-leaf weeds by inhibition carotenoid biosynthesis, and then its MRLs(Maximum Residue Limits) will be determined in onion and garlic. In this study, a new official method was developed for aclonifen determination in agricultural products to routinely inspect the violation of MRL as well as to evaluate the terminal residue level. METHODS AND RESULTS: Aclonifen was extracted from crop samples with acetone and the extract was partitioned with dichloromethane and then purified by silica solid phase extraction(SPE) cartridge. The purified samples were detected GC using an ECD detector. Limits of detection(LOD) was 0.001 mg/kg and quantification(LOQ) was 0.005 mg/kg, respectively. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, $10{\times}LOQ$, $50{\times}LOQ$, n=5). The recoveries were ranged from 74.3 to 95.0% with relative standard deviations(RSDs) of less than 8%. All values were consistent with the criteria ranges requested in the Codex guidelines(CAC/GL 40). CONCLUSION: The proposed analytical method was accurate, effective and sensitive for aclonifen determination and it will be used to as an official method in Korea.

Establishment of an Analytical Method for Determination of Fungicide Oxathiapiprolin in Agricultural Commodities using HPLC-UV Detector (HPLC-UVD를 이용한 농산물 중 살균제 Oxathiapiprolin의 잔류분석법 확립)

  • Jang, Jin;Kim, Heejung;Do, Jung Ah;Ko, Ah-Young;Lee, Eun Hyang;Ju, Yunji;Kim, Eunju;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.186-193
    • /
    • 2016
  • An analytical method was developed for the determination of oxathiapiprolin in agricultural commodities. Oxathiapiprolin is a new oomycide (fungicide of piperidinyl thiazole isoxazoline class) which controls downy mildew in cucurbits caused by Pseudoperonospora cubensis (oomycete plant pathogen). Agricultural commodities were extracted with acetonitrile and partitioned with dichloromethane to remove the interference, adjusting pH between 9 and 10 by 1 N sodium hydroxide. After purification by silica SPE cartridge to clean up the interference of organic compounds, they were finally quantified by HPLC-UVD (high performance liquid chromatograph ultraviolet detector) using a wavelength at 260 nm and confirmed by LC-MS (liquid chromatograph mass spectrometer) in electro-spray ionization positive ion mode. The standard calibration curve was linear with coefficients of determination ($r^2$) 1.00 over the calibration ranges (0.025-2.5 mg/L). Recoveries were ranged between 86.7 to 112.7%, with relative standard deviations less than 10% at three concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates. The overall results were determined and estimated according to the CODEX guidelines (CAC/GL40). The proposed method for determination of oxathiapiprolin residues in agricultural commodities can be used as an official method.

Development of Simultaneous Analytical Method for Streptomycin and Dihydrostreptomycin Detection in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Streptomycin 및 Dihydrostreptomycin 동시시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Park, Shin-Min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • A method was developed for the simultaneous detection of an antibiotic fungicide, streptomycin, and its metabolite (dihydrostreptomycin) in agricultural products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using methanol adjusted to pH 3 using formic acid, and purified with a HLB (Hydrophilic lipophilic balance) cartridge. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.001 to 0.1 mg/kg, and linearity of five agricultural products (hulled rice, potato, soybean, mandarin, green pepper), with coefficients of determination $(R^2){\geq}0.9906$, for streptomycin and dihydrostreptomycin. The mean recoveries at three fortification levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) were from 72.0~116.5% and from 72.1~116.0%, and relative standard deviations were less than 12.3% and 12.5%, respectively. The limits of quantification (LOQ) were 0.01 mg/kg, which are satisfactory for quantification levels corresponding with the Positive List System. All optimized results satisfied the criteria ranges requested in the Codex guidelines and the Food Safety Evaluation Department guidelines. The present study could serve as a reference for the establishment of maximum residue limits and be used as basic data for detection of streptomycin and dihydrostreptomycin in food.

Development of a Simultaneous Analytical Method for Determination of Herbicide Fenquinotrione and KIH-3653-M-2 Residues in Agricultural Crops using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 제초제 fenquinotrione 및 대사산물 KIH-3653-M-2 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • An analytical method was developed for the determination of fenquinotrione, a triketone herbicide, in agricultural products. Fenquinotrione was metabolized to KIH-3653-M-2 in plants. Analyte extraction was conducted using 2% formic acid in acetonitrile and cleaned up using a hydrophillic-lipophillic balance (HLB) cartridge. The limits of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. Matrix-matched calibration curves were linear over the calibration ranges ($0.001{\sim}0.1{\mu}g/mL$) into a blank extract with $r^2>0.99$. The recovery results for fenquinotrione and KIH-3653-M-2 ranged between 81.1 to 116.2% and 78.0 to 110.0% at different concentration levels (LOQ, $10{\times}LOQ$, $50{\times}LOQ$) with relative standard deviation (RSD) less than 4.6%. All values were corresponded with the criteria ranges requested in both the Codex (CAC/GL 40-1993, 2003) and MFDS guidelines (2016). Therefore, the proposed method can be used as an official analytical method for determination of fenquinotrione in the Republic of Korea.

Development and Validation of an Analytical Method for Fenpropimorph in Agricultural Products Using QuEChERS and LC-MS/MS (QuEChERS법과 LC-MS/MS를 이용한 농산물 중 Fenpropimorph 시험법 개발 및 검증)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • An analytical method was developed for the determination of fenpropimorph, a morpholine fungicide, in hulled rice, potato, soybean, mandarin and green pepper using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) sample preparation and LC-MS/MS (liquid chromatography-tandem mass spectrometry). The QuEChERS extraction was performed with acetonitrile followed by addition of anhydrous magnesium sulfate and sodium chloride. After centrifugation, d-SPE (dispersive solid phase extraction) cleanup was conducted using anhydrous magnesium sulfate, primary secondary amine sorbents and graphitized carbon black. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.0025 to 0.25 mg/kg, and their correlation coefficient ($R^2$) of five agricultural products were higher than 0.9899. The limits of detection (LOD) and quantification (LOQ) were 0.001 and 0.0025 mg/kg, respectively, and the limits of quantification for the analytical method were 0.01 mg/kg. Average recoveries spiked at three levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) and were in the range of 90.9~110.5% with associated relative standard deviation values less than 5.7%. As a result of the inter-laboratory validation, the average recoveries between the two laboratories were 88.6~101.4% and the coefficient of variation was also below 15%. All optimized results were satisfied the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. This study could serve as a reference for safety management relative to fenpropimorph residues in imported and domestic agricultural products.

Determination of Ursodeoxycholic Acid in Crude Drug Formulations by HPLC and SPE Using Selective Pre-column Derivatization with 2-Bromoacetyl-6-methoxynaphthalene (2-Bromoacetyl-6-methoxynaphthalene을 형광유도체화제로 HPLC와 SPE를 이용한 생약제제 중 Ursodeoxycholic acid의 정량)

  • 진창화;임수희;이기진;심형섭;조의환;염정록
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.392-397
    • /
    • 2002
  • A simple and sensitive high performance liquid chromatographic method to quantitate ursodeoxycholic acid in crude drug pharmaceuticals was investigated. Ursodeoxycholic acid react with 2-bromoacetyl-6-methoxynaphthalene (Br-AMN) in the presence of triethylamine to form highly fluorescent derivative. The derivatization procedure was performed at 7$0^{\circ}C$ and completed within 30 min. The optimal wavelength of the fluorescence detector are λ$_{ex}$=300 nm and λ$_{em}$ = 460 nm. The LOD of the ursodeoxycholic acid was 25 ng/mι based on the S/N =3, and the LOQ was 80 ng/mι based on S/N = 10. Crude drug pharmaceuticals pretreated by solid phase extraction (Sep-pak $C_{18}$ cartridge) which were shown very good separation and recovery values for the compound.d.

Analysis of the 6-gingerol Content in Zingiber spp. and their Commercial Foods using HPLC

  • Cho, Sunghun;Lee, Dong Gu;Lee, Sullim;Chae, Sungwook;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.377-381
    • /
    • 2015
  • The content analysis of 6-gingerol, which is an active compound, in Zingiber spp. (Z. officinale and Z. mioga) and their commercial foods (ginger teas and powders) was conducted using high-performance liquid chromatography. A reverse phase system was used, with a gradient solvent system of water and acetonitrile. The 6-gingerol content was highest in the methanol extract of Z. officinale root (17.09 mg/g extract) and ginger powder B (15.92 mg/g extract). The results demonstrated that this method was simple and reliable for the quality control of Zingiber commercial foods.

Melamine testing of meat, eggs and diary products sold in Incheon

  • Ra, Do-Kyung;Hong, Seong-Hee;Lee, Jeong-Gu;Lee, Sung-Mo
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.381-383
    • /
    • 2009
  • From Oct. 2008 to Oct. 2009, 619 livestock products sold in Incheon were examined for melamine contamination. HPLC was used to detect the melamine concentration from various products. $C_{18}$ column $(3.9\times150mm,\;4{\mu}m)$ was applied with a phase composed of 10mM citric acid and 10mM sodium octane sulfonate : acetonitrile (in ratio 90:10) pumped isocratically at 1.0ml/min. Melamine was not detected from any of the products at the level of LOD 0.03mg/kg and LOQ 0.08mg/kg, suggesting that no melamine contamination was ascertained in livestock products in Incheon area. However, further tests should be done to detect other melamine analogues for the evaluation of toxicity and safety of melamine and cyanuric acid in the future.

Gas Chromatographic Analysis and Cholinesterase Activity of the Essential Oil from Korean Agastache rugosa (기체크로마토그래피에 의한 한국산 배초향의 정유 분석과 Cholinesterase 억제활성)

  • Choi, Jae Sue;Song, Byong-Min;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The herb of Agastache rugosa (Lamiaceae) called Korean mint as a spice or Agastache Herba as a crude drug is known to contain highly fragrant volatile substances. This research aimed to establish the quantitative gas chromatography (GC) method on the essential oil of A. rugosa using the three standard compounds, estragole, methyleugenol, pulegone, and to find whether the essential oil has anti-Alzheimer's activity. The GC quantification method was established by determining the linearity of calibration curve ($R^2$), linear range, and both limit-of-detection (LOD) and limit-of-quantification (LOQ). The $IC_{50}$ of the essential oil on the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined to be $69.06{\pm}0.26$ and $76.71{\pm}0.58{\mu}g/ml$, respectively.