• Title/Summary/Keyword: LOPA

Search Result 13, Processing Time 0.028 seconds

Safety Enhancement of LPG Terminal by LOPA & SIF Method (LOPA 및 SIF기법에 의한 LPG 인수기지의 안전성향상에 대한 연구)

  • Lee, Il Jae;Kim, Rae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.431-439
    • /
    • 2015
  • The methods which decrease the accident hazards of LPG(Liquefied Petroleum Gas) terminal on the basis of butane & propane storage tanks by applying HAZOP(Hazard and Operability), LOPA(Layer of Protection Analysis) and SIL(Safety Integrity Level) are suggested. The accident scenarios were derived by analyzing latent risks through the HAZOP. The scenarios which would have the big damage effect in accidents were selected and then LOPA was assessed by analyzing IPL(Independent Protection Layer) about the correspond accident scenarios. The improved methods were proposed on the basis of level of SIF(Safety Instrumented Functions) as a IPL considering satisfied condition of risk tolerance criteria($1.0{\times}10^{-05}/y$). In addition, The proposed IPLs were basis on the economic analysis. The effect of SIF as a IPL considering the changes of accident frequency was studied in case of the accident scenarios derived from the concerned process.

The Reasonable SIL Determination by LOPA for HIPS Design of Flare Stack (LOPA분석에 의한 Flare Stack용 HIPS의 합리적 SIL결정)

  • Park, Jinhyung;Park, Kyoshik
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.221-221
    • /
    • 2023
  • 1969년에 발간된 API521 1st edition에서는 Flare Load 저감용으로 적용되는 HIPS (High Integrity Protection System)는 모두 Pressure Safety Valve의 고장확률보다 낮은 SIL 3 (Safety Integrity Level)등급을 적용할 것을 요구하고 있다. Flare Stack 저감용 HIPS는 주로 압축기 출력압력상승, Reboiler Steam 과다주입, 전력공급중단냉각펌프고장 등에 의한 Flare 발생을 예방하기 위한 기능을 가진 SIF (Safety Instrumented Function)로 구성된다. 하지만 2007년도 발간된 API521 5th edition에서는 LOPA (Layer Of Protection Analysis) 분석을 통해 Target SIL을 도출하는 것으로 요구사항을 변경했다. 이에 따라 이번 연구에서는 Flare Load에 가장 큰 영향을 미치는 시나리오 중 대표적인 시나리오를 대상으로 HAZOP(Hazard and Operability Study)과 LOPA분석을 실시해서 Target SIL이 어떻게 도출되는지를 연구했다. Flare Stack에서 Flare를 발생시키는 대표적인 시나리오들에 대해 LOPA분석을 실시한 결과 압축기 출력압력상승은 SIL 2, Reboiler Steam 과다주입은 SIL 3, 전력공급중단은 SIL 0, 냉각펌프고장은 SIL 0로 모두가 SIL 3 가 나오지는 않았다. SIF 설계 시 Target SIL을 만족시키는 것도 중요하지만 운전 시 SIL 등급이 계속 유지되게 하지 위해 인적오류, 시스템적 고장, 하드웨어고장 등에 의해 SIF 기능불능화가 되는 것을 예방하기 위한 기능안전관리시스템 (FSMS)를 적용하는 것도 중요하다.

  • PDF

Establishment of the Appropriate Risk Standard through the Risk Assessment of Accident Scenario (사고시나리오별 위험도 산정을 통한 적정 위험도 기준 설정)

  • Kim, Kun-Ho;Chun, Young-Woo;Hwang, Yong-Woo;Lee, Ik-Mo;Kwak, In-ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.74-81
    • /
    • 2017
  • An off-site consequence analysis is used to calculate the risks when hazardous chemicals that is being used on-site has been exposed off-site; the biggest factor that impacts the risk is the risks of accident scenarios. This study seeks to calculate risks according to accident scenarios by applying OGP/LOPA risk calculating methods for similar facilities, calculate risk reduction ratio by inspecting applicable IPL for incidents, and propose an appropriate risk standard for different risk calculating methods. Considering all applicable IPL when estimating the safety improvement of accident scenarios, the risk of OGP is 8.05E-04 and the risk of LOPA is 1.00E-04, According to the case of IPL, the risk is 1.34E-02. The optimal risk level for accident scenarios using LOPA was $10^{-2}$, but the appropriate risk criteria for accident scenarios in foreign similar studies were $10^{-3}{\sim}10^{-4}$, the risk of a scenario can be determined at an unacceptable level. When OGP is applied, it is analyzed as acceptable level, but in case of applying LOPA, all applicable IPL should be applied in order to satisfy the acceptable risk level. Compared to OGP, the risk is high when LOPA is applied. Therefore, the acceptable risk level should be set differently for each risk method.

Risk Management for Ammonia Unloading and Storage Tank Facility (암모니아 입하 및 저장시설에서의 위험도 관리)

  • Jeong, Yun Seo;Woo, In Sung;Lim, Jong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.95-103
    • /
    • 2017
  • A lot of hazardous materials have been used for product processing and utility plant. Many accidents including toxic release, fire and explosions occur in the ammonia related facility and plant. Various safety and environment management program including PSM, SMS, ORA etc. are being implemented for risk management and accident prevention in the production industry. Also much study and research have been carried about risk assessment of accident scenario in the academic and research area. In this paper, firstly risk level was assessed by using a typically used KORA program and LOPA PFD method for the selected ammonia unloading and storage facility. And then risk reduction measures for the risk assessed facility were studied in 3 aspects and some measures were proposed. Those Risk Reduction measures are including a leak detection and emergency isolation, water spray, dilution tank, dike and trench, scattering protection in hardware impovement aspect, and a applicable risk criteria, conditional modifier for existing LOPA PFD, alternative supporting modeling program in risk estimation methodology aspect, and last RBPS(Risk Based Process Safety) program, re-doing of process hazard analysis, management system compliance audit in managerial activity aspect.

A Study on the Achievement of Required Safety Integrity Level to Reduce Risk for SMR On-Site Hydrogen Refueling Stations (개질형 On-Site 수소충전소의 리스크 감소를 위해 요구되는 SIL 등급 달성 방안에 관한 연구)

  • Lee, Jin Ho;Lim, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • In recent years, hydrogen has received much attention as an alternative energy source to fossil fuels. In order to ensure safety from the increasing number of hydrogen refueling stations, prevention methods have been required. In this regard, this study suggested an approach to reduce the risk of hydrogen refueling station by increasing Safety Integrity Level (SIL) for a Steam Methane Reformer (SMR) in On-Site Hydrogen Refueling Station. The worst scenario in the SMR was selected by HAZOP and the required SIL for the worst scenario was identified by LOPA. To verify the required SIL, the PFDavg.(1/RRF) of Safety Instrumented System (SIS) in SMR was calculated by using realistic failure rate data of SIS. Next, several conditions were tested by varying the sensor redundancy and proof test interval reduction and their effects on risk reduction factor were investigated. Consequently, an improved condition, which were the redundancy of two-out-of-three and the proof test interval of twelve months, achieved the tolerable risk resulting in the magnitude of risk reduction factor ten times greater than that of the baseline condition.

SIS Design for Fuel Gas Supply System of Dual Fuel Engine based on Safety Integrity Level(SIL) (이중연료엔진의 연료가스공급시스템에 대한 안전무결도 기반 안전계장시스템 설계)

  • Kang, Nak-Won;Park, Jae-Hong;Choung, Choung-Ho;Na, Seong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.447-460
    • /
    • 2012
  • In this study, the shutdown system of the fuel gas supply system is designed based on the Safety Integrity Level of IEC 61508 and IEC 61511. First of all, the individual risk($10^{-4}$/year) and the risk matrix which are the risk acceptance criteria are set up for the qualitative risk assessment such as the HAZOP study. The natural gas leakage at the gas supply pipe is identified as the highest risk among the hazards identified through the HAZOP study and as a safety instrumented function the shutdown function for leakage was defined. SIL 2 and PFD($2.5{\cdot}10^{-3}$) for the shutdown function are determined by the layer of protection analysis(LOPA). The shutdown system(SIS) carrying out the shutdown function(SIF) is verified and designed according to qualitative and quantitative requirements of IEC 61508 and IEC 61511. As a result of SIL verification and SIS conceptual design, the shutdown system is composed of two gas detectors voted 1oo2, one programmable logic solver, and two shutdown valve voted 1oo2.

Electrodeposition of Gold on Fluorine-Doped Tin Oxide: Characterization and Application for Catalytic Oxidation of Nitrite

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Lopa, Nasrin Siraj;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2072-2076
    • /
    • 2014
  • Sub-micrometer size gold particles were electrodeposited on a transparent fluorine-doped tin oxide (FTO) from acetonitrile solution containing $AuCl_4{^-}$ and tetramethylammonium tetraflouroborate (TMATFB) for detecting $NO_2{^-}$. A series of two-electron ($2e^-$) and one-electron ($1e^-$) reductions of the $AuCl_4{^-}-AuCl_2{^-}-Au$ redox systems were observed at FTO and a highly stable and homogeneous distribution of Au on FTO (Au/FTO) was obtained by stepping the potential from 0 to -0.55 V (vs. Ag/$Ag^+$). The Au/FTO electrode exhibited sufficiently high catalytic activity toward the oxidation of $NO_2{^-}$ with a detection limit (S/N = 3) and sensitivity of 2.95 ${\mu}M$ and 223.4 ${\mu}A{\cdot}cm^{-2}{\cdot}mM^{-1}$, respectively, under optimal conditions. It exhibited an interference-free signal for $NO_2{^-}$ detection with excellent recoveries from real samples.

A Study on Safety of Atmospheric Storage Tank through Detailed Analysis of Accident Case (사고사례 정밀분석을 통한 상압저장탱크의 안전에 관한 연구)

  • Yim, Ji Pyo;Park, Su Youl
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.41-48
    • /
    • 2019
  • In October 2018, a large fire occurred after an explosion in an internal floating roof tank (IFRT) that stores gasoline by wind lantern in Goyang city, Gyeonggi-do. Although there was no casualty damage, the fire inside the tank lasted for 17 hours, and caused a great wave socially, and it was a chance to review the safety of the atmospheric storage tank. In this study, the necessity of installing a flame arrester at peripheral vents was examined through the calculation of the size of ventilation pipe and ventilation rate of internal floating roof tanks in terms of the function of the peripheral vent. Next, the necessity of the emergency shut-off valve linked with the high-level alarm to prevent the overflow of the atmospheric storage tank was confirmed by LOPA. Finally, safety measures to prevent overpressure, flame propagation and overflow which cause major accidents in atmospheric storage tank are suggested.

A Reliability Model of Process Systems with Multiple Dependent Failure States (다중 종속 고장상태를 갖는 공정시스템의 신뢰성 모델)

  • Choi, Soo Hyoung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.37-41
    • /
    • 2018
  • Process safety technology has developed from qualitative methods such as HAZOP (hazard and operability study) to semi-quantitative methods such as LOPA (layer of protection analysis), and quantitative methods are actively studied these days. Quantitative risk assessment (QRA) is often based on fault tree analysis (FTA). FTA is efficient, but difficult to apply when failure events are not independent of each other. This problem can be avoided using a Markov process (MP). MP requires definition of all possible states, and thus, generally, is more complicated than FTA. A method is proposed in this work that uses an MP model and a Weibull distribution model in order to construct a reliability model for multiple dependent failures. As a case study, a pressure safety valve (PSV) is considered, for which there are three kinds of failure, i.e. open failure, close failure, and gas tight failure. According to recently reported inspection results, open failure and close failure are dependent on each other. A reliability model for a PSV group is proposed in this work that is to reproduce these results. It is expected that the application of the proposed method can be expanded to QRA of various systems that have partially dependent multiple failure states.

A Study of Risk Reduction by SIL(Safety Integrity Level) Determination (SIL(Safety Integrity Level) 선택에 의한 리스크 감소에 관한 연구)

  • Kim, Jung-Hwan;Kim, Bum-Su;Yang, Jae-Mo;Jang, Chang-Bong;Kim, Min-Seop;Jung, Sang-Yong;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.57-62
    • /
    • 2011
  • Modern chemical plants including petroleum refinery and gas industries have evolved into more complex and specialized. In these industrial complexes, it is important to maintain acceptable safety level protecting from various potential disasters caused by fire, explosion and the leakage of toxic materials. Recently possibility and consequence of accidents are increasing in the industrial process. So there is a trade-off between the plant operation efficiency and safety level. In this study SIF(Safety instrument Functions) was incorporated into SIL(Safety Integrity Levels). As a result, the safety level was upgraded by designing resonable allocation of safety instruments.