• 제목/요약/키워드: LOH (loss of heterozygosity)

검색결과 23건 처리시간 0.022초

Comparison of the copy-neutral loss of heterozygosity identified from whole-exome sequencing data using three different tools

  • Lee, Gang-Taik;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.4.1-4.8
    • /
    • 2022
  • Loss of heterozygosity (LOH) is a genomic aberration. In some cases, LOH can be generated without changing the copy number, which is called copy-neutral LOH (CN-LOH). CN-LOH frequently occurs in various human diseases, including cancer. However, the biological and clinical implications of CN-LOH for human diseases have not been well studied. In this study, we compared the performance of CN-LOH determination using three commonly used tools. For an objective comparison, we analyzed CN-LOH profiles from single-nucleotide polymorphism array data from 10 colon adenocarcinoma patients, which were used as the reference for comparison with the CN-LOHs obtained through whole-exome sequencing (WES) data of the same patients using three different analysis tools (FACETS, Nexus, and Sequenza). The majority of the CN-LOHs identified from the WES data were consistent with the reference data. However, some of the CN-LOHs identified from the WES data were not consistent between the three tools, and the consistency with the reference CN-LOH profile was also different. The Jaccard index of the CN-LOHs using FACETS (0.84 ± 0.29; mean value, 0.73) was significantly higher than that of Nexus (0.55 ± 0.29; mean value, 0.50; p = 0.02) or Sequenza (0 ± 0.41; mean value, 0.34; p = 0.04). FACETS showed the highest area under the curve value. Taken together, of the three CN-LOH analysis tools, FACETS showed the best performance in identifying CN-LOHs from The Cancer Genome Atlas colon adenocarcinoma WES data. Our results will be helpful in exploring the biological or clinical implications of CN-LOH for human diseases.

Loss of Heterozygosity at 1p, 7q, 17p, and 22q in Meningiomas

  • Chang, In-Sok;Cho, Byung-Moon;Moon, Seung-Myung;Park, Se-Hyuck;Oh, Sae-Moon;Cho, Seong-Jjn
    • Journal of Korean Neurosurgical Society
    • /
    • 제48권1호
    • /
    • pp.14-19
    • /
    • 2010
  • Objective : Allelic losses or loss of heterozygosity (LOH) at many chromosomal loci have been found in the cells of meningiomas. The objective of this study was to evaluate LOH at several loci of different chromosomes (1p32, 17p13, 7q21, 7q31, and 22q13) in different grades of meningiomas. Methods : Forty surgical specimens were obtained and classified as benign, atypical, and anaplastic meningiomas. After DNA extraction, ten polymorphic microsatellite markers were used to detect LOH. Medical and surgical records, as well as pathologic findings, were reviewed retrospectively. Results : LOH at 1p32 was detected in 24%, 60%, and 60% in benign, atypical, and anaplastic meningiomas, respectively. Whereas LOH at 7q21 was found in only one atypical meningioma. LOH at 7q31 was found in one benign meningioma and one atypical meningioma. LOH at 17p13 was detected in 4%, 40%, and 80% in benign, atypical, and anaplastic meningiomas, respectively. LOH at 22q13 was seen in 48%, 60%, and 60% in benign, atypical, and anaplastic meningiomas, respectively. LOH results at 1p32 and 17p13 showed statistically significant differences between benign and non-benign meningiomas. Conclusion : LOH at 1p32 and 17p13 showed a strong correlation with tumor progression. On the other hand, LOH at 7q21 and 7q31 may not contribute to the development of the meningiomas.

대장암에서 17, 18번 염색체의 이형접합성 소실 (Loss of Heterozygosity (LOH) on 17th and 18th Chromosome from Colorectal Carcinoma)

  • 이재식
    • 대한임상검사과학회지
    • /
    • 제40권1호
    • /
    • pp.41-47
    • /
    • 2008
  • Colorectal carcinoma is occurred frequently to Korean and so ranked the fourth from various cancers. Due to western dietary life, this cancer has been increased continually. Therefore, the study will be needed to find a candidate gene involved in the development and progression of colorectal carcinoma and to diagnose and treatment helpfully. The striking feature from cancer suppressor genes is known for LOH (loss of heterozygosity), which is the method to find allele genetic loss or mutation of cancer cell. The purpose of this study was designed to find a carcinogenic gene from colon cancer using microsatellite marker on 17th and 18th chromosome from 30 subjects. The LOH was investigated in order of D18S59 57% (17/30), TP53CA 50% (15/30), D18S68 47% (14/30), D18S69 43% (13/30). The genetic mutation depends on loci of colorectal carcinoma was shown higher with 2.44 from colon cancer than with 1.25 from right colorectal carcinoma (p<0.032). The genetic mutation with lymph nodes was investigated higher with 2.69 at mutated group than with 1.14 at non-mutated group (p<0.003). At genetic mutated pattern depends on disease stage, there was higher significant difference at III-IV stage 2.50 than that of I-II stage 1.17, respectively (p=0.015). There was no difference at comparison between histological classification and serological CEA increase. The loss on 18q21 found in this study is highly recurrence loci and was observed 43% for Korean with high recurrence. Therefore, LOH is a very useful tool to detect 18q21 loci in clinical application, prior to the treatment of colorectal carcinoma. After the operation of colorectol carcinoma, the efficient application using LOH at operated part tissue which is designed to protect the recurrence as well as its cure will be needed.

  • PDF

Loss of Heterozygosity at the Calcium Regulation Gene Locus on Chromosome 10q in Human Pancreatic Cancer

  • Long, Jin;Zhang, Zhong-Bo;Liu, Zhe;Xu, Yuan-Hong;Ge, Chun-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2489-2493
    • /
    • 2015
  • Background: Loss of heterozygosity (LOH) on chromosomal regions is crucial in tumor progression and this study aimed to identify genome-wide LOH in pancreatic cancer. Materials and Methods: Single-nucleotide polymorphism (SNP) profiling data GSE32682 of human pancreatic samples snap-frozen during surgery were downloaded from Gene Expression Omnibus database. Genotype console software was used to perform data processing. Candidate genes with LOH were screened based on the genotype calls, SNP loci of LOH and dbSNP database. Gene annotation was performed to identify the functions of candidate genes using NCBI (the National Center for Biotechnology Information) database, followed by Gene Ontology, INTERPRO, PFAM and SMART annotation and UCSC Genome Browser track to the unannotated genes using DAVID (the Database for Annotation, Visualization and Integration Discovery). Results: The candidate genes with LOH identified in this study were MCU, MICU1 and OIT3 on chromosome 10. MCU was found to encode a calcium transporter and MICU1 could encode an essential regulator of mitochondrial $Ca^{2+}$ uptake. OIT3 possibly correlated with calcium binding revealed by the annotation analyses and was regulated by a large number of transcription factors including STAT, SOX9, CREB, NF-kB, PPARG and p53. Conclusions: Global genomic analysis of SNPs identified MICU1, MCU and OIT3 with LOH on chromosome 10, implying involvement of these genes in progression of pancreatic cancer.

설편평상피암에 있어서의 고밀도 SNP Genotyping 어레이를 이용한 전게놈북제수와 헤테로접합성 소실의 분석 (Analysis of copy number abnormality (CNA) and loss of heterozygosity (LOH) in the whole genome using single nucleotide polymorphism (SNP) genotyping arrays in tongue squamous cell carcinoma)

  • 쿠로이와 츠카사;야마모토 노부하루;온다 타케시;베스요 히로키;야쿠시지 타카시;카타쿠라 아키라;타카노 노부오;시바하라 타카히코
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권6호
    • /
    • pp.550-555
    • /
    • 2011
  • Chromosomal loss of heterozygosity (LOH) is a common mechanism for the inactivation of tumor suppressor genes in human epithelial cancers. LOH patterns can be generated through allelotyping using polymorphic microsatellite markers; however, owing to the limited number of available microsatellite markers and the requirement for large amounts of DNA, only a modest number of microsatellite markers can be screened. Hybridization to single nucleotide polymorphism (SNP) arrays using Affymetarix GeneChip Mapping 10 K 2.0 Array is an efficient method to detect genome-wide cancer LOH. We determined the presence of LOH in oral SCCs using these arrays. DNA was extracted from tissue samples obtained from 10 patients with tongue SCCs who presented at the Hospital of Tokyo Dental College. We examined the presence of LOH in 3 of the 10 patients using these arrays. At the locus that had LOH, we examined the presence of LOH using microsatellite markers. LOH analysis using Affymetarix GeneChip Mapping 10K Array showed LOH in all patients at the 1q31.1. The LOH regions were detected and demarcated by the copy number 1 with the series of three SNP probes. LOH analysis of 1q31.1 using microsatellite markers (D1S1189, D1S2151, D1S2595) showed LOH in all 10 patients (100). Our data may suggest that a putative tumor suppressor gene is located at the 1q31.1 region. Inactivation of such a gene may play a role in tongue tumorigenesis.

Construction of Deletion Map of 16q by LOH Analysis from HCC Patients and Physical Map on 16q 23.3 - 24.1 Region

  • Chung, Jiyeol;Choi, Nae Yun;Shim, Myoung Sup;Choi, Dong Wook;Kang, Hyen Sam;Kim, Chang Min;Kim, Ung Jin;Park, Sun Hwa;Kim, Hyeon;Lee, Byeong Jae
    • Genomics & Informatics
    • /
    • 제1권2호
    • /
    • pp.101-107
    • /
    • 2003
  • Loss of heterozygosity (LOH) has been used to detect deleted regions of a specific chromosome in cancer cells. LOH on chromosome 16q has been reported to occur frequently in progressed hepatocellular carcinoma (HCC). Liver tissues from 37 Korean HCC patients were analyzed for LOH by using 25 polymorphic microsatellite markers distributed along 16q. Out of the 37 HCC patients studied, 21 patients (56.8%) showed LOH in various regions of 16q with at least one polymorphic marker. Puring the analysis of these 21 LOH cases, 6 patients showed interstitial LOHs in which the boundary of the LOH region was defined. With two rounds of LOH analysis, five commonly occurring interstitial LOH regions were identified; 16q21-22.1, 16q22.2 - 22.3, 16q22.3, 16q23.2 and 16q23.3 - 24.1. Among the five LOH regions the 16q23.3 - 24.1 region has been reported to be related with chromosome instability. A complete physical map, which covers the 3.2 Mb region of 16q23.3 - 24.1 (D16S402 and D16S486), was constructed to identify novel candidate tumor suppressor genes. We provide the minimally tiling path map consisting of 28 BAC clones. There was one gap between NT_10422.11 and NT_019609.9 of the human genome sequence contig (NCBI sequence build 33, April 29, 2003). This gap can be filled by sequencing the R-1425M20 clone which bridges these sequence contigs.

비소세포폐암에서 21q 이형체 소실 (Loss of Heterozygosity on the Long Arm of Chromosome 21 in Non-Small Cell Lung Cancer)

  • 채포희;배락천;이응배;박재용;강경희;김경록;배문섭;차승악;채상철;김창호;정태훈
    • Tuberculosis and Respiratory Diseases
    • /
    • 제50권6호
    • /
    • pp.668-675
    • /
    • 2001
  • 연구배경 : 제21번 염색체가 3개(trisomy)인 다운 증후군(Down syndrome) 에서는 폐암을 포함한 고형종양의 빈도가 일반인에 비해 유의하게 낮다. 이와 같이 디운증후군에서 폐암 위험도가 낮은 것은 여분의 21번 염색체가 존재함에 따른 유전자-용량 효과(gene-dosage effect) 때문일 가능성이 있으며 이는 폐암의 발생과정에 관여하는 종양억제유전자가 21번 염색체에 있음을 의미한다. 저자들은 21번 염색체의 종양억제 유전자 발굴을 위한 선행연구로 21번 염색체 장암의 LOH 빈도와 LOH 유 무에 따른 임상상을 비교하였다. 방 법 : 근치적 절제술을 받은 비소세포폐암 39예를 대상으로 하였다. 동결된 폐암조직과 환자의 림프구에서 DNA를 추출한 후 21q의 5개의 현미부수체 표지자를 이용하여 PCR을 시행하고 6% polyacrylamide-8M urea gel에서 전기영동 한 후 silver 염색을 하였다. LOH는 암조직의 대립유전자 signal이 림프구의 50%이하로 감소된 경우로 판정하였으며 종양의 fractional allelic loss(FAL)는 informative 표지자 수에 대한 LOH가 발견된 표지자 수의 비로 계산하였다. 결 과 : 대상환자 39예 가운데 21예(53.8%)에서 한 개 이상의 표시자에서 LOH가 관찰되었다. LOH는 편평상피세포암의 경우 23예 가운데 15예(65.2%)에서, 선암의 경우는 16예 가운데 6예(37.5%)에서 관찰되어 편평상피세포암에서 LOH의 빈도가 높은 경향이 있었다. 편평상피세포암에서 LOH 빈도는 I 기 53.8%와 II-III기 80.0%로 진행된 병기에서 높은 경향이 있었으나 통계적 유의성은 없었다. 종양에서 대립 유전자 소실의 축적 정도를 반영하는 지표인 FAL치는 편평상피세포암의 경우 0.431(${\pm}0.375$)로 선암의 0.192(${\pm}0.276$)에 비해 통계적으로 유의하게 높았다. 편평상피세포암에서 FAL치는 I 기 0.391(${\pm}0.427$)인데 비해 II-III기는 0.484(${\pm}0.310$)로 통계적 유의성은 없었으나 진행된 병기에서 높은 경향을 보였다. 결 론 : 비소세포폐암에서 21q의 LOH가 흔히 관찰되었으며 이러한 결과는 비소세포폐암의 발암과정에 관여하는 종양억제유전자가 21q에 존재할 가능성을 강력히 시사한다. 21q에 존재하는 LOH의 역할을 규명하기 위해서는 향후 보다 많은 예를 대상으로 한 연구가 필요할 것으로 생각된다.

  • PDF

Candidate Tumor-Suppressor Gene Regions Responsible for Radiation Lymphomagenesis in F1 Mice with Different p53 Status

  • Hong, Doo-Pyo;Choi, Dong-Kug;Choi, Wahn-Soo;Cho, Bong-Gum;Park, Tae-Kyu;Lim, Beong-Ou
    • 한국약용작물학회지
    • /
    • 제14권2호
    • /
    • pp.96-100
    • /
    • 2006
  • Regions of allelic loss on chromosomes in many tumors of human and some experimental animals are generally considered to harbor tumor-suppressor genes involved in tumorigenesis. Allelotype analyses have greatly improved our under-standing of the molecular mechanism of radiation lymphomagenesis. Previously, we and others found frequent loss of heterozygosity (LOH) on chromosomes 4, 11, 12, 16 and 19 in radiation-induced lymphomas from several $F_1$, hybrid mice. To examine possible contributions of individual tumor-suppressor genes to tumorigenesis in p53 heterozygous deficiency, we investigated the genome-wide distribution and status of LOH in radiation-induced lymphomas from $F_1$ mice with different p53 status. In this study, we found frequent LOH (more than 20%) on chromosomes 4 and 12 and on chromosomes 11, 12, 16 and 19 in radiation-induced lymphomas from $(STS/A{\times}MSM/Ms)F_1$ mice and $(STS/A{\times}MSM/Ms)F_1-p53^{KO/+}$ mice, respectively. Low incidences of LOH (10-20%) were also observed on chromosomes 11 in mice with wild-type p53, and chromosomes 1, 2, 9, 17 and X in p53 heterozygous-deficient mice. The frequency of LOH on chromosomes 9 and 11 increased in the $(STS/A{\times}MSM/Ms)F_1-p53^{KO/+}$ mice. Preferential losses of the STS-derived allele on chromosome 9 and wild-type p53 allele on chromosome 11 were also found in the p53 heterozygous-deficient mice. Thus, the putative tumor-suppressor gene regions responsible for lymphomagenesis might considerably differ due to the p53 status.

Inactivation of SMAD$_4$ Tumor Suppressor gene during Gastric Cancer Progression

  • Shin, Young-Kee
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2006년도 추계학술대회
    • /
    • pp.19-24
    • /
    • 2006
  • Mothers against decapentaplegic homolog 4 (SMAD4) is a tumor suppressor gene associated with gastrointestinal carcinogenesis. The aim of the present study was to characterize more precisely its role in the development and progression of human gastric carcinoma. In this study, using tissue microarray analysis of 283 gastric cancers and related lesions, we found loss of SMAD4 protein expression in the cytoplasm (36/114, 32%) and in the nucleus (46/114, 40%) of gastric cancer cells. The loss of nuclear SMAD4 expression in primary tumors correlated significantly with poor survival, and was an independent prognostic marker in multivariate analysis. We also found a substantial decrease in SMAD4 expression at both the RNA and protein level in several human gastric carcinoma cell lines. To identify the genetic and/or epigenetic mechanisms of altered SMAD4 expression in gastric carcinoma, loss of heterozygosity (LOH), promoter hypermethylation, and exon mutations were examined. We found that LOH (20/70, 29%) and promoter hypermethylation (4/73, 5%) were associated with the loss of SMAD4 expression. SMAD4 protein levels wore also affected in certain gastric carcinoma cell lines following incubation with Mc132, a proteasome inhibitor. Taken together, our results indicate that the loss of SMAD4, especially loss of nuclear SMAD4 expression, is involved in gastric cancer progression. The loss of SMAD4 in gastric carcinomas is due to several mechanisms, including LOH, hypermethylation, and proteasome degradation.

  • PDF

한국인 두경부암 환자에서 제3번 염색체 단완의 결손 (Chromosome 3p Deletions in Korean Head and Neck Carcinomas)

  • 손미나;유영아;조증근;최건;최종욱;김열홍;김준석
    • 대한두경부종양학회지
    • /
    • 제14권1호
    • /
    • pp.20-26
    • /
    • 1998
  • Objectives: Deletion in the short arm of chromosome 3 is common in many human cancers, including sporadic and hereditary renal carcinomas, small cell lung carcinomas, non-small cell lung carcinomas, and carcinomas of the ovary, breast, and cervix. A high frequency of chromosomal aberrations in head and neck cancers involving chromosome 3p has also been reported. These findings suggest that multiple tumor suppressor genes may be present on the short arm of chromosome 3. Materials and Methods: To investigate the possibility of chromosome 3p deletions in the Korean head and neck cancer patients, we applied a polymerase chain reaction(PCR)-based Restriction Fragment Length Polymorphism analysis to the DNA samples of matched normal mucosa and head and neck squamous cell carcinomas from 19 patients. Results: In the 19 normal samples heterozygosity at the polymorphic loci varied: 6 at the D3F15S2 locus(on telomeric 3p21), 2 at the D3S32 locus(on centromeric 3p21), and 4 at the THRB locus(on centromeric 3p24). In 12 matched carcinoma specimens, LOH(loss of heterozygosity) was observed at D3F15S2 in 1 of 6(17%), D3S32 in 1 of 2(50%), and at THRB in 2 of 4 cases(50%). Conclusion: The frequency of chromosome 3p deletion in the Korean head and neck carcinomas appear as other country did.

  • PDF