• Title/Summary/Keyword: LOAD CELL

Search Result 1,194, Processing Time 0.033 seconds

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

A Study on Reactive Congestion Control with Loss Priorities in ATM Network (ATM 네트워크에서 우선권을 갖는 반응 혼잡 제어에 관한 연구)

  • Park, Dong-Jun;Kim, Hyeong-Ji
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.697-708
    • /
    • 1996
  • In this paper, we study reactive congestion control with priority in ATM network. The priority schemes for buffer access, partial buffer sharing have been investigated in order to improve the utilization of ATM network resources the network and to satisfy the most demanding traffic class. We consider in this paper a discrete-time queueing model for partial buffer sharing with two Markov modulated Poisson inputs. This model can be used to analyze the the effects of the partial buffer sharing priority scheme on system performance for realistic cases of bursty services. Explicit formulae are derived for the number of cells in the system and the loss probabilities for the traffic. Congestion may still occur because of unpredictable statistical fluctuation of traffic sources even when preventive control is performed in the network. In this Paper, we study reactive congestion control, in which each source changes its cell emitting rate a daptively to the traffic load at the switching node. Our intention is that,by incorporating such a congcstion control method in ATM network,more efficient congsestion control is established. We develope an analytical model,and carry out an approximateanalysis of reactive congestion con-trol with priority.Numerical results show that several orders of magnitude improvement in the loss probability can be achieved for the high priority class with little impact on the low priority class performance.And the results show that the reactive congestion control with priority are very effective in avoiding congestion and in achieving the statistical gain.

  • PDF

Study of Temperature Compensation method in Mini-Cones (소형 콘의 온도보상 기법 연구)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Cho, Se-Hyun;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.29-38
    • /
    • 2011
  • The smaller diameter cone penetrometer has been widely used to estimate the characteristics of local area due to high vertical resolution. The half-bridge cirucits have been adopted to measure the mechnical strength of soil through the smaller diameter cone penetrometer due to the limitation of the areas for configuring the full-bridge circuit. The half-bridge circuit, however, is known as being easily affected to the temperature variation. The objective of this study suggests the temperature-compensated method in mini-cones. The diameter and length of the mini-cone is designed to 15mm and 56mm. The load cell of the mini-cone is extended about 54mm on the behind of the mini-cone to reflect the only temperature variation. The full-bridge circuit is installed to measure the temperature-compensated values in the mini-cone and the half-bridge circuit is also organized to compare the temperature compensated values with uncompensated values. The seasonal variation tests are performed to define the effect of temperature variation under summer and winter temperature condition. The densification tests are also carried out to investigate temperature effects during penetration. The measured mechanical resistances with temperature-compensated method show more reliable and reasonable values than those measured by thermal uncompensated system. This study suggests that the temperature-compensated method of the mini-cone may be a useful technique to obtain the more reliable resistances with minimizing the temperature effect.

Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo

  • Yadav, Brijesh;Pandey, Vijay;Yadav, Sarvajeet;Singh, Yajuvendra;Kumar, Vinod;Sirohi, Rajneesh
    • Journal of Animal Science and Technology
    • /
    • v.58 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2016
  • Background: Heat stress adversely affects the physiological and metabolic status, and the productive performance of buffalo. Methods: The present study was conducted to explicate the effect of misting and wallowing cooling strategies during heat stress in lactating Murrah buffalo. The study was conducted for three months (May-July) of which first two months were hot dry and last month was hot humid. Eighteen lactating buffaloes, offered the same basal diet, were blocked by days in milk, milk yield and parity, and then randomly allocated to three treatments: negative control (no cooling), cooling by misting, and cooling by wallowing. Results: The results showed higher (P < 0.05) milk yield in buffaloes of misting and wallowing group compared to control during the experimental period however wallowing was found more (P < 0.05) effective during July (hot humid period). Both the treatments resulted into significant (P < 0.05) reduction in rectal temperature (RT) and respiratory rate (RR) compared to control animals during study period whereas wallowing was found to be effective on pulse rate (PR) only during July. Both treatments were resulted in mitigating the heat stress mediated decrease in packed cell volume (PCV), lymphocytopnoea and neutrophilia whereas decrease in total erythrocyte count (TEC) and monocytes was only mitigated by wallowing. Heat load induced alteration in serum creatinine and sodium concentration was significantly (P < 0.05) ameliorated by misting and wallowing whereas aspartate aminotransferase, alkaline phosphatase and superoxide dismutase activity, and reactive oxygen species concentration could be normalized neither by misting nor by wallowing. The significant (P < 0.05) increment in serum cortisol and prolactin levels observed in June and July period in control animals was significantly (P < 0.05) prevented by misting and wallowing. Conclusions: It can be concluded that misting and wallowing were equally effective in May and June (hot dry period) whereas wallowing was more effective during hot humid period in preventing a decline in milk production and maintaining physiological, metabolic, endocrine and redox homeostasis.

Performance estimation of conical picks with slim design by the linear cutting test (II): depending on skew angle variation (선형절삭시험에 의한 슬림 코니컬커터의 절삭성능 평가(II): Skew Angle 변화에 의한 결과)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Park, Young-Taek
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.585-597
    • /
    • 2014
  • In this study, the cutter acting forces were measured by 3-directional load cell at two different skew angles and various S/d ratios during a series of linear cutting tests using a slim conical pick. The analysis for cutting performance were carried out after calculating average values of the measured results. The increase of penetration depth results in the decrease of specific energy. And the variations of the cutter acting forces depending on penetration depth in the case of 6 degree skew angle were smaller than in the case of 0 degree skew angle. From this results, 6 degree skew angle is more effective than 0 degree skew angle in designing optimal specifications of cutting head. In addition, $F_c/F_n$ under the setting of 6 degree skew angle was smaller than under the setting of 0 degree skew angle. However, it should be considered that the increase of cutter acting force in the cutting direction accompanied the increase of driving force in the case of the setting for 6 degree skew angle.

Friction of calcium phosphate brackets to stainless steel wire (인산칼슘재 브라켓과 강선사이의 마찰저항에 관한 연구)

  • Joo, Hyo-Jin;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.37 no.5
    • /
    • pp.376-385
    • /
    • 2007
  • Esthetic brackets which resemble the color of natural teeth have been widely used. But the frictional resistance of ceramic brackets, a typical esthetic bracket, is greater than that of metal brackets. The purpose of this study was to measure the frictional resistance of the new calcium phosphate brackets (CPB) which were recently developed and to evaluate its clinical usability by comparing the frictional differences of CPB with metal brackets and metal slot inserted ceramic brackets. Methods: Experimental groups were CPB (Hyaline II, Tomy, Tokyo, Japan), metal bracket (Kosaka, Tomy, Tokyo, Japan) and metal slot inserted ceramic bracket (Clarity, 3M Unitek, Monrovia, CA, USA). All of the brackets had 0.022-inch slot sizes. The brackets were tested with $0.019\;{\times}\;0.025$ inch stainless steel wire (3M Unitek, Monrovia, CA, USA). A biologic model was used to simulate the situation which would occur during orthodontic treatment with fixed appliances. Retraction force was applied at a speed of 5 mm/min for 30 seconds. The frictional resistance was measured on a universal testing machine (Instron 4467, Instron, Norwood, MA, USA). Results: CPB showed significantly higher friction than metal brackets (p < 0.05) and lower friction than metal slot inserted ceramic brackets (p < 0.01). Conclusions: CPB can be considered to be a useful orthodontic esthetic bracket with respect to frictional resistance, as its friction is remarkably lower than that of metal slot inserted ceramic brackets.

ICT inspection System for Flexible PCB using Pin-driver and Ground Guarding Method (핀 드라이버와 접지가딩 기법을 적용한 모바일 디스플레이용 연성회로기판의 ICT검사 시스템)

  • Han, Joo-Dong;Choi, Kyung-Jin;Lee, Young-Hyun;Kim, Dong-Han
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.97-104
    • /
    • 2010
  • In this paper, ICT (in circuit tester) inspection system and inspection algorithm is proposed and detects whether inferiority exists or not in the mounted device on the flexible PCB in cell phones or mobile display devices. The system is composed of PD (pin-driver) and GGM (ground guarding method). The structural characteristics of these flexible PCB are analyzed, which is needed to input or output the test signal. Test signal to investigate the characteristics of passive components is generated using modified circuit diagram and proposed inspection algorithm. PM (pin-map) is decided on the basis of circuit diagram and has the information about the kind of test signal to be applied and the pad number for the test signal to be connected. PD is designed to load a proper test signal for a specific pad and is adjusted according to PM so that the reconstructed circuit has minimum node and mash. The proposed ICT inspection system is realized using PD and GGM. Using the system, an experiment for each passive component is done to investigate the measurement accuracy of the developed system and an experiment for real flexible PCB model is done to verity the effectiveness of the system.

Comparisons of Water Behavior and Moisture Content between Rockwools and Coir used in Soilless Culture (무토양재배용 암면과 코이어 배지의 수분 이동 및 함수율 특성 비교)

  • Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • To improve crop productivity with optimal water management in soilless culture, the information of physical characteristics of the root medium including water behavior should be required. The objectives of this study were to analyze the physical characteristics including hydraulic properties of the root media commercially used and to analyze the relationships between actual moisture content and measured one by FDR sensor. The weight of the medium was measured by load cell for calculating the actual moisture content. The accuracy of the moisture content measured by FDR sensor was obtained by comparing with the actual one. The water holding capacity of the coir was lower than those of the rockwool due to the features of large and rough particles of the coir. The moisture content measured by FDR sensor showed large difference from the actual moisture contents measured by loadcell, indicating that the calibration of FDR sensor is needed before starting measurement. The optimum range of moisture content for irrigation control was narrow in the coir than the rockwool due to the lower water holding capacity and rehydration capability of the coir. The results of this study can be useful in establishing adequate irrigation strategies in the soilless culture.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Measurement of Tensile Properties for Thin Aluminium Film by Using White Light Interferometer (백색광간섭계를 이용한 알루미늄 박막의 인장 물성 측정)

  • Kim, Sang-Kyo;Oh, Chung-Seog;Lee, Hak-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2010
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different from the corresponding bulk properties and thus there has been a strong need for the development of a reliable test method to measure the mechanical properties of a thin film. We have developed an alternative and convenient test method to overcome the limitations of previous membrane deflection experiment and uniaxial tensile test by adopting a white light interferometer having sub-nanometer out-of-plane displacement resolution. The freestanding aluminium specimens are tested to verity the effectiveness of the test method developed and get the tensile properties. The specimens are 0.5 rum wide, $1{\mu}m$ thick and fabricated through MEMS processes including sputtering. 1 to 5 specimens are fabricated on Si dies. The membrane deflection experiments are carried out by using a homemade tester consisted of a motor-driven loading tip, a load cell, and 6 DOF alignment stages. The test system is compact enough to set it up beneath a commercial white light interferometric microscope. The white light fringes are utilized to align a specimen with the tester. The Young's modulus and yield point stress of the aluminium film are 62 GPa and 247 MPa, respectively.