• Title/Summary/Keyword: LO-to-RF isolation

Search Result 61, Processing Time 0.026 seconds

A 24-GHz Wide-IF Down-Conversion Mixer Based on 0.13-μm RFCMOS Technology (0.13-μm RFCMOS 공정 기반 24-GHz 광대역 하향 변환 혼합기)

  • Kim, Dong-Hyun;Rieh, Jae-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1235-1239
    • /
    • 2010
  • In this work, a wideband technique has been proposed that improves the IF bandwidth of mixers and a 24-GHz down-conversion mixer employing the proposed technique has been designed and fabricated based on 0.13-${\mu}m$ RFCMOS technology. The mixer showed the conversion gain of $2.7{\pm}1.5$ dB from DC to 5.25 GHz IF for a fixed LO frequency of 24 GHz. Measured P-1dB and LO-RF isolation was -8.7 dBm and 21 dB, respectively. The mixer draws DC current of 10.6 mA from 1.3 V supply.

Phase Conjugator for Retrodirective Array Antenna Applications (능동 역지향성 배열 안테나용 공액 위상변위기)

  • Chun Joong-Chang;Jeung Deuk-Soo;Lee Byung-Rho;Tack Han-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.134-138
    • /
    • 2005
  • In this paper, we have developed a new type of the microwave phase conjugator for the active retrodirective antenna array. The circuit topology is consisted of a 2-port structure to avoid the complexity of LO and RF signal combination and matching, using the cascade connection of two single-ended mixers. The operating frequencies are 4.0 GHz, 2.01 GHz and 1.99 GHz for LO, RF, and IF, respectively. Conversion loss is measured to be -7 dB and 1-dB compression point 15 dBm with the LO power of 9 dBm. For the most important parameter, the isolation between RE leakage and IF signal is as high as 25 dB.

A FG-CPW Single Balanced Diode Mixer for C-Band Application (C-Band 용 FG-CPW 단일 평형 다이오드 혼합기)

  • Bae, Joung-Sun;Lee, Jong-Chul;Kim, Jong-Heon;Lee, Byung-Je;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2001
  • In this paper, FG-CPW (Finite-Ground Coplanar Wave-Guide) balanced diode mixer is presented. Frequency bandwidth is selected for a C-band, which is 5.72~5.82 GHz for RF, 5.58~5.68 GHz for LO, and 140 MHz for IF signals. A rat-race hybrid is designed for the accomplishment of single balanced type. A low pass filter (LPF) with CPW structure is used far good conversion loss and unwanted harmonics suppression. When LO signal with the power of 4 dBm at 5.635 GHz is injected, a conversion loss of 6.2 dB is obtained for the mixer. Also, the LO to RF and LO to IF isolation of 30 dB and 40 dB are obtained, respectively. This mixer can be used in the area on wireless LAN application.

  • PDF

A New Compact Double Conversion Gate Mixer using a Half-LO Frequency

  • Lee, Jae-Ryong;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.56-58
    • /
    • 2002
  • In this paper, the double conversion gate mixer using a half-LO frequency is described at 25 GHz band. The proposed mixer uses two HEMTs excited by a single LO signal of half-LO frequency in order to generate the second IF signal. That is, the LO signal having the half-LO frequency is only fed into the gate of the first HEMT mixer as a normal gate mixer. The LO signal through the first mixer is find into the second mixer The proposed miler requires not only half of the normal LO frequency, but also lower LO power than the conventional subharmonically pumped milers. Over the bandwidth of 500 MHz at 24.5 GHz, the conversion gain is 2.5 dB, the noise figure is 9 dB, and the isolation between RF and LO port is 32 dB when the LO poller is 0 dBm at 12.65 GHz.

High LO-RF Isolation W-band MIMIC Single-balanced Mixer (높은 LO-RF 격리 특성의 W-band MIMIC Single-balanced 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Lee Sang-Jin;Jin Jin-Min;Go Du-Hyun;Kim Sung-Chan;Shin Dong-Hoon;Park Hyung-Moo;Park Hyim-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.67-74
    • /
    • 2005
  • In this paper, high LO-RF isolation W-band MIMIC single-balanced mixer was designed and fabricated using a branch line coupler and a $\lambda$/4 transmission line. The simulation results of the designed 94 GHz balun show return loss of -27.9 dB, coupling of -4.26 dB, and thru of -3.77 dB at 94 GHz, respectively. The isolation and phase difference were 23.5 dB and $180.2^{\circ}$ at 94 GHz. The W-band MIMIC single-balanced mixer was designed using the 0.1 $\mu$m InGaAs/InAlAs/GaAs Metamorphic HEMT diode. The fabricated MHEMT was obtained the cut-off frequency(fT) of 189 GHz and the maximum oscillation frequency(fmax) of 334 GHz. The designed MIMIC single-balanced mixer was fabricated using 0.1 $\mu$m MHEMT MIMIC Process. From the measurement, the conversion loss of the single-balanced mixer was 23.1 dB at an LO power of 10 dBm. Pl dB(1 dB compression point) of input and output were 10 dBm and -13.9 dBm respectively. The LO-RF isolations of single-balanced mixer was obtained 45.5 dB at 94.19 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

Design of Broadband Hybrid Mixer using Dual-Gate FET (이중게이트 FET 를 이용한 광대역 하이브리드 믹서 설계)

  • Jin, Zhe-Jun;Lee, Kang-Ho;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.197-200
    • /
    • 2005
  • This paper presents the design of a broadband hybrid mixer using dual-gate FET topology with a low-pass filter which improves return loss of output to isolate RF and LO signal. The low-pass filter shows the isolation whose RF and LO signal is better than 40 dBc at 2 GHz and 5 GHz band. The dual-gate mixer which has been designed by using cascade topology operates when the lower FET is biased in linear region and the upper FET is in saturation. The input matching circuit has been designed to have conversion gain from 2 GHz to 6 GHz. The designed mixer with low-pass filter shows the conversion gain of better than 7 dB from 2 GHz to 6 GHz at a low LO power level of 0 dBm with the fixed IF frequency of 21.4 MHz.

  • PDF

Balanced Mixer Based on Composite Right/Left-Handed Transmission Line Leaky-Wave Antenna (CRLH 전송 선로 리키 웨이브 안테나를 이용한 평형 믹서)

  • Kim, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.985-991
    • /
    • 2008
  • This paper presents a novel balanced mixer receiver front-end design based on a metamaterial structure applicable to differential-/common-mode excitation. This metamaterial structure functions as a leaky-wave antenna and provides in-trinsic common-mode suppression. Low LO leakage and high RF to LO isolation are achieved without additional filters for LO and RF paths. The metamaterial is based on a unit-cell which under a differential-mode excitation behaves like a composite right/left-handed(CRLH) metamaterial. In contrast, the metamaterial unit-cell is below cut-off under a common-mode excitation. Experimental results are used to verify the proposed metamaterial's differential-/common-mode characteristics. The metamaterial is integrated with a balanced mixer design resulting in an operation frequency range of $1.96{\sim}2.40$ GHz with an optimum mixer conversion loss of 21.1 dB at 2,4 GHz.

Variable Conversion Gain Mixer for Dual Mode Receiver (이중 모우드 수신기용 가변 변환이득 믹서)

  • Park, Hyun-Woo;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.138-144
    • /
    • 2006
  • In this paper, dual mode FET mixer for WiBro and wireless LAN(WLAN) applications has been designed in the form of dual gate FET mixer by using the cascode structure of two single gate pHEMTs. The designed dual gate mixer has been optimized to have variable conversion gain for WiBro and WLAN applications in order to save dc power consumption. The LO to RF isolation of the designed mixer is more than 20dB from 2.3GHz to 2.5GHz band. With the LO power of 0dBm and RF power of -50dBm, the mixer shows 15dB conversion gain. When RF power increases from -50dBm to -20dBm, the conversion gain decreases to -2dB from 15dB with bias change. The variable conversion gain has several advantages. It can reduce the high dynamic range requirement of AGC burden at IF stage. Also, it can save the dc power dissipation of mixer up to 90%.

  • PDF

Dual-Band Balanced Mixer using Nonlinear Phase Characteristic of CRLH Transmission Line (CRLH 전송선로의 비선형 위상 특성을 이용한 이중대역 평형 믹서)

  • Jung, Youn-Woo;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • This paper presents a dual-band balanced mixer using nonlinear phase characteristic of composite right/left-handed (CRLH) transmission line. This metamaterial structure provides low LO leakage and high RF to LO isolation without additional filters for LO and RF path. The balanced mixer consists of balun and Wilkinson divider with dual-band characteristic of unit-cell which behaves like a CRLH metamaterial. Experimental results are used to verify the proposed metamaterial functions. The balanced mixer design results in an operating frequency of 870 MHz and 1660 MHz with an optimum mixer conversion loss of 15.2 dB at 870 MHz and 21.2 dB at 1660 MHz.

A Performance Consideration on Conversion Loss in the Integrated Single Balanced Diode Mixer

  • Han, Sok-Kyun;Kim, Kab-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.139-142
    • /
    • 2003
  • In this paper, we consider the factors that affect a conversion loss performance in designing a single balanced diode mixer integrated with IRF(Image Reject Filter), based on the embedded electrical wavelength placed between the IRF and mixer, diode matching and LO drive amplifier. To evaluate the conversion loss performance, we suggest two types of a single balanced mixer using 90 degree branch line coupler, microstrip line and schottky diode. One is only mixer and the other is integrated with IRF and LO drive amplifier. The measured results of a single balance diode mixer integrated IRF show the conversion loss of 8.5 dB and the flatness of 1 dB p-p from 21.2 GHz to 22.6 GHz with 10 dBm LO. The measured input PI dB and IIP3 are 7 dBm and 15 dBm respectively under the nominal LO power level of 10dBm. The LO/RF and LO/IF isolation are 22 dB and 50 dB, respectively.