• Title/Summary/Keyword: LNG-Tank

Search Result 405, Processing Time 0.035 seconds

Hazard Evaluation And Analysis For LNG Storage Tank (LNG 탱크의 위험도 평가 및 분석)

  • Kim, Myungbae;Do, Kyu Hyung
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Hazard evaluation and FTA are performed as the first and the second step of QRA for a LNG storage tank. Hazards are identified using HAZOP. Each segment of the system is examined, and we list all possible deviations from normal operating conditions and how they might occur. The consequences on the process are assessed, and the means available to detect and correct the deviations are reviewed. The FTA is carried out to analyse the hazards identified from the HAZOP study. A top event is selected to be release of LNG. Then all combinations of individual failures that can lead to the hazardous event are shown in the logical format of the fault tree system.

Study on the Effect of Density Ratio of Gas and Liquid in Sloshing Experiment (기체-액체 밀도차에 대한 슬로싱 충격압력의 실험적 고찰)

  • Ahn, Yangjun;Kim, Sang-Yeob;Kim, Kyong-Hwan;Lee, Sang-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • This paper presents the results of sloshing experiments having different fluids in model tanks with various density ratios. The experimental model consisting water and air at ambient, which has been commonly used, is not consistent in density ratio with that of an actual LNG cargo tank. Therefore, an advanced experimental scheme is developed to consider the same density ratio of LNG and NG by using a mixed gas of sulfur hexafluoride ($SF_6$) and nitrogen ($N_2$). For experimental observation, a two-dimensional model tank of 1/40 scale and a three-dimensional model tank of 1/50 scale have been manufactured and tested at various conditions. Two different fillings with various excitation frequencies under regular motions have been considered for the two-dimensional model tank, and three different filling levels under irregular motions have been imposed for the three-dimensional model tank. The density ratio between gas and liquid varies from the ratio of the ambient air and water to that of the actual LNG cargo container, and the different composition of gas is used for this variation. Based on the present experimental results, it is found that the decrease of sloshing pressure is predicted when the density ratio increases.

Optimum Binder Ratio of Mass Concrete for LNG Tank (LNG저장시설 적용을 위한 매스콘크리트 최적 결합재 혼입율 검토)

  • Kim, Young-Jin;Park, Sang-Jun;Kim, Kyoung-Min;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • The optimum binder ratio of the low heat mass concrete for LNG tank was evaluated in the present study. Three types of binder such as OPC I, ground granulated blast-furnace slag powder were mixed and were used. Also fine particle cement and activator were used to raise an early age strength development and ground limestone was used to reduce the cost. As a result of the study, mix ratio II (30:30:40) was suitable for Bottom Center and mix ratio III(40:30:30) was suitable for Roof based on compressive strength and semi-adiabatic temperature.

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.

Seismic protection of LNG tanks with reliability based optimally designed combined rubber isolator and friction damper

  • Khansefid, Ali;Maghsoudi-Barmi, Ali;Khaloo, Alireza
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.523-532
    • /
    • 2019
  • Different types of gas reservoir such as Liquid Natural Gas (LNG) are among the strategic infrastructures, and have great importance for any government or their private owners. To keep the tank and its contents safe during earthquakes especially if the contents are of hazardous or flammable materials; using seismic protection systems such as base isolator can be considered as an effective solution. However, the major deficiency of this system can be the large deformation in the isolation level which may lead to the failure of bearing system. In this paper, as a solution, the efficacy of an optimally designed combined vibration control system, the combined laminated rubber isolator and rotational friction damper, is investigated to evaluate the enhancement of an existing metal tank response under both far- and near-field earthquakes. Responses like impulsive and convective accelerations, base shear, and sloshing height are studied herein. The probabilistic framework is used to consider the uncertainties in the structural modeling, as well as record-to-record variability. Due to the high calculation cost of probabilistic methods, a simplified structural model is used. By using the Mont-Carlo simulation approach, it is revealed that this combined isolation system is a highly reliable system which provides considerable enhancement in the performance of reservoir, not only leads to the reduction of probability of catastrophic failure of the tank but also decrease the reservoir damage during the earthquake. Moreover, the relative displacement of the isolation level is controlled very well by this combined system.

Characteristics of Fiber Laser Welding on STS304L for GTT MARK III Membrane (GTT MARK III 스테인리스강 STS304L의 파이버 레이저 용접특성)

  • Kim, Jong-Do;Lee, Chang-Je;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1069-1075
    • /
    • 2012
  • Laser is high density heat source, so it can make high speed welding with minimum heat input possible. Especially the high power fiber laser is recently commercialized and has high beam quality and the smallest system size compared with conventional laser due to it's unique oscillating mechanism. Because of these advantages it's thought that the most suitable heat source for LNG cargo tank welding precess which has to be conducted inside of ships. In this study fiber laser was used for welding of stainless steel for LNG carrier to applicate laser welding technique for shipbuilding industry. 1.2mmt STS304L of austenite stainless steel which apply to cargo tank was used for fiber laser welding. Butt and lap welding was conducted changing laser power, welding speed, then penetration characteristic was analyzed and optimal parameters for each materials. Consequently, we found that same or better mechanical properties were obtained in weld compared to base metal.

Characteristics of Rigid Polyurethane Foams Blown by HFCs for LNG Storage Tank (HFC계 발포제를 사용한 LNG 저장탱크용 폴리우레탄 폼 단열재의 특성)

  • Lee Yeongbeom;Choi Sunghee;Choi Gunhyung
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.16-20
    • /
    • 2005
  • CFC-11 and HCFC-l4lb have been used as blowing agents for rigid polyurethane foam insulation of LNG storage tank. But CFC-11 and HCFC- l4lb deplete ozone layer in the stratosphere. So in leading countries, the use of CFC-11 has been prohibited since 1995 and the use of HCFC-l4lb will be prohibited from 2005. Much efforts and studies have been done about alternative blowing agents and insulations blown by alternative blowing agents. This paper deals with polyurethane foams (PUFs) blown by HFC-365mfc, shows their physical and mechanical characteristics and thermal performance. These data are compared with the results of PUFs blown by HCFC-l4lb. From these test results, PUFs blown by HFC-365mfc show good mechanical and thermal characteristics. It is possible to use PUFs blown by HFC-365mfc as main insulation of membrane type LNG storage tank.

  • PDF