• 제목/요약/키워드: LNG carrier(Liquefied natural gas carrier)

검색결과 39건 처리시간 0.029초

LNG 운반선에서의 신개념 증발 가스 처리 시스템 - VaCo 시스템 (Third Wave of Gas Management System in LNG Carrier - VaCo System)

  • 최정호;유홍성;유경남;허안;이두영;류승각
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2007년도 특별논문집
    • /
    • pp.89-93
    • /
    • 2007
  • The Boil-off gas (BOG) generation during the voyage is inevitable since Natural Gas (NG) in normally liquefied below -160 degree C in atmosphere condition and small heat ingress due to relatively hot outside keeps evaporating continuously. The one of major issue in LNG carriers is to handle generated BOG from cargo tank. The generated BOG affects to increase the cargo tank pressure and Gas Management System (GMS) for LNG carriers is closely related to cargo tank pressure maintenance. Economically, BOG is generally used as fuel in LNG carrier. Newly developed GMS for LNG carrier in boiler propulsion system, VaCo System, not only accomplish automatic control in GMS but also ensure safer operation.

  • PDF

액화천연가스 운반선(LNGC)의 발전 추세 (A Developing Tendency of Liquefied Natural Gas Carriers)

  • 이동섭
    • 해양환경안전학회지
    • /
    • 제15권3호
    • /
    • pp.269-274
    • /
    • 2009
  • LNGC(Liquefied Natural Gas Carrier)의 역사는 1959년 $5,000m^3$ 급 LNG선 "Methane Pioneer"호를 시작으로 1969년에는 $71,500m^3$ 급, 1973년에는 Moss Type의 최초 LNG운반선 "Norman Lady($87,600m^3$)호, 1980년대 $125,000m^3$ 급을 시작으로 1990년대를 거처 $135,000m^3$ 급, 2007년 $210,000m^3$급 그리고 2008년에는 $266,000m^3$ 급의 초대형 액화천연가스 운반선이 출현하였다. 또한 2006년 11월에는 기존 내 외연 기관이 아닌 발전기 기동으로 Propeller를 움직이는 DFDE(Duel Fuel Diesel Electric)엔진, 육상의 Storage Tank를 생략한 기화설비를 갖춘 LNG-RV(Re-gasification Vessel)와 주 기관은 Slow Diesel을 택하고, 운항 중 발생하는 BOG(Boil Off Gas)를 재액화시키는 설비를 갖춘 DRL(Diesel Re-Liquefaction)선박 및 해상 LNG 생산 저장시설인 LNG-FPSO(Floating Production and Storage Offshore), 그리 고 해상 LNG 인수기지 역할을 하는 LNG-FSRU(Floating Store and Re-gasification Unit) 등이 개발되었다. 이 논문에서는 LNG Project, 전 세계 에너지 시장과 LNGC의 발전 추세에 대하여 다루었다.

  • PDF

Visualization and classification of hidden defects in triplex composites used in LNG carriers by active thermography

  • Hwang, Soonkyu;Jeon, Ikgeun;Han, Gayoung;Sohn, Hoon;Yun, Wonjun
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.803-812
    • /
    • 2019
  • Triplex composite is an epoxy-bonded joint structure, which constitutes the secondary barrier in a liquefied natural gas (LNG) carrier. Defects in the triplex composite weaken its shear strength and may cause leakage of the LNG, thus compromising the structural integrity of the LNG carrier. This paper proposes an autonomous triplex composite inspection (ATCI) system for visualizing and classifying hidden defects in the triplex composite installed inside an LNG carrier. First, heat energy is generated on the surface of the triplex composite using halogen lamps, and the corresponding heat response is measured by an infrared (IR) camera. Next, the region of interest (ROI) is traced and noise components are removed to minimize false indications of defects. After a defect is identified, it is classified as internal void or uncured adhesive and its size and shape are quantified and visualized, respectively. The proposed ATCI system allows the fully automated and contactless detection, classification, and quantification of hidden defects inside the triplex composite. The effectiveness of the proposed ATCI system is validated using the data obtained from actual triplex composite installed in an LNG carrier membrane system.

LNG선의 BOR평가를 위한 비정상상태 열전달 해석 (LNG Boil-Off Rate Estimation for LNG Carrier by Unsteady Heat Transfer Analysis)

  • 조진래;박희찬
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.166-171
    • /
    • 2008
  • LNG carrier is a special-purpose vessel to transport natural gas (NG) from the place of origin to each consuming country. To increase the capacity of canying LNG carrier, the natural gas is conveyed as a state of liquid called LNG (Liquefied Natural Gas) during a voyage because the total volume of NG is surprisingly reduced when it is cooled down to $-162^{\circ}C$. That is why the design of insulation of the carriers is important to protect LNG from the external heat invasion, and it has been a great challenging subject for several decades in the shipbuilding industry. For this ultimate goal, the boil-off rate (BOR) needs to be accurately estimated during a voyage. Therefore, the goal of this study is to propose a numerical method for estimating the BOR of LNG for given insulation containment subject to external temperature conditions during voyage.

  • PDF

Development of partial liquefaction system for liquefied natural gas carrier application using exergy analysis

  • Choi, Jungho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.609-616
    • /
    • 2018
  • The cargo handling system, which is composed of a fuel gas supply unit and cargo tank pressure control unit, is the second largest power consumer in a Liquefied Natural Gas (LNG) carrier. Because of recent enhancements in ship efficiency, the surplus boil-off gas that remains after supplying fuel gas for ship propulsion must be reliquefied or burned to regulate the cargo tank pressure. A full or partial liquefaction process can be applied to return the surplus gas to the cargo tank. The purpose of this study is to review the current partial liquefaction process for LNG carriers and develop new processes for reducing power consumption using exergy analysis. The developed partial liquefaction process was also compared with the full liquefaction process applicable to a LNG carrier with a varying boil-off gas composition and varying liquefaction amounts. An exergy analysis showed that the Joule-Thomson valve is the key component needed for improvements to the system, and that the proposed system showed an 8% enhancement relative to the current prevailing system. A comparison of the study results with a partial/full liquefaction process showed that power consumption is strongly affected by the returned liquefied amount.

LNG운반선의 BOG 처리설비 (The BOG Handling System for LNG Carrier)

  • 김만응;김유택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.557-561
    • /
    • 2005
  • In recent years, the LNGC fleet is expanded unprecedentedly. Ship's owners and shipbuilders are focusing on the idea how they choose the BOG handling system in economical, environmental and safety angles. This paper introduces general information for that and gives technical matters briefly.

  • PDF

실해역 상태를 고려한 LNG 선박의 SLOSHING 해석 (Numerical Sloshing Analysis of LNG Carriers in Irregular Waves)

  • 박종진;김문성;김영복;하문근
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.38-43
    • /
    • 2005
  • The present study is concerned with the numerical analysis of the sloshing impact pressure of the Liquefied Natural Gas (LNG) carriers in rough sea. The reliable predictions of the both random tank motions in irregular waves and violent fluid flow in the LNG tanks are required for practical sloshing analysis procedure of LNG carriers. The three-dimensional numerical model adopting SOLA-VOF scheme is used to predict violent free surface movements of LNG tank in irregular motions. For accurate input motion of tank, a three-dimensional panel method program called SSMP (Samsung Ship Motion Program) is applied for seakeeping analysis. Comparison studies of sloshing analysis are carried out for No.2 tank of 138K and 205K LNG carriers to verify the safety of the LNG containment system of the proposed 205K large LNG carrier.

  • PDF

LNG운반선의 화물 누출 시 함침된 고분자 폼의 기계적 성능에 관한 연구 (A study on the mechanical performance of impregnated polymer foam in cargo leakage of LNG carrier)

  • 박기범;김태욱;김슬기;이제명
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.345-352
    • /
    • 2017
  • 본 연구에서는 액화천연가스(Liquefied natural gas, LNG) 운반선 화물창 손상으로 인한 극저온 LNG 누출 및 하중 작용 시 화물창의 초저온 보냉재를 구성하고 있는 고분자 폼(Polymer foam) 소재의 성능을 관찰하고자 하였다. LNG와 맞닿아 있는 LNG 운반선 1차 방벽은 유체 충격하중이나 오랜 시간 동안의 LNG 적재/하역으로 인해 손상이 누적 되면 누출로 이어지게 된다. 극저온 유체의 누출은 다공성 밀폐 셀 구조인 고분자 폼 내부에 영향을 끼쳐 작용 하중에 대한 거동변화를 야기한다. 본 연구에서는 단열재(Insulation)로 사용되는 고분자 소재인 폴리이소시아누레이트 폼(Polyisocyanurate foam, PIF) 시험편의 기계적 성능에 대한 평가를 수행하였다. 시험편에 극저온 액체를 함침시켜 압축실험을 진행함으로써 저온 취성(Cold brittleness)으로 인한 성능 변화와 함께 극저온 유체의 함침 영향에 대해 정량적으로 비교분석 하였다.

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF

Fatigue Analysis of LNG Cargo Containment System Connections in Membrane LNG Carrier

  • Park, Jun-Bum
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.112-124
    • /
    • 2017
  • As an LNG carrier preserves and transports liquefied natural gas under minus $163^{\circ}C$, the cargo tank has to have sufficient hull strength against not only the wave loads but also against loads caused by loading and unloading and thermal expansion to keep the LNG safely. The main insulation types for a CCS are No.96 and Mark III from GTT for the membrane LNG carrier. Particularly, the invar membrane plate in No.96 is very thin and its connections could experience high local stresses owing to such dynamic loads. Therefore, it should be verified whether those connections have sufficient fatigue lives for the purpose of operation and maintenance. This research aims at performing fatigue analysis with 0.1 fatigue damage criteria for 40 years of design life to support new membrane CCS development using proper S-N curves and the associated finite element modeling technique for each connection and then propose a reasonable design methodology.