• 제목/요약/키워드: LNG FPSO carrier

검색결과 7건 처리시간 0.025초

LNG선박 화물창의 펄라이트 단열재 적용성에 관한 설계 특성 연구 (Study on the characteristics of perlite insulation for the storage tank in LNG carrier)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.843-848
    • /
    • 2013
  • LNG 수요의 증가에 따라, LNG FPSO (부유식 생산저장 하역설비) 선박 및 LNG 선박의 건조도 지속적으로 증가하고 있고, 다양한 형태의 저장탱크 설계가 시도되고 있다. 본 논문에서는 LNG를 저장하는 선박 화물창 내부탱크의 방식으로 5~9% Ni강재를 적용하고, 단열재를 우레탄폼 블록 대신에 펄라이트 분말을 충전하는 새로운 선박 탱크 형식을 제안하였다. 펄라이트 단열재의 적용 가능성을 위하여 필수적으로 검토되어야 하는 펄라이트의 내부탱크 벽체에 가하는 압력, 압력 흡수를 위하여 적용되는 탄성 블랭킷의 특성, 블랭킷의 적정 설계두께, 내부탱크 설계압력 등 설계 인자들을 분석하였다. 연구결과로, 블랭킷의 두께설계 기준은 내부탱크 단열간격의 1/4~1/3 사이가 되어야 하고 적정 두께는 30% 정도가 되었으며, 탱크 설계압력 기준은 블랭킷 두께에 따라 1,500 Pa 이하가 되어야 하는 것으로 얻어졌다.

Research of design challenges and new technologies for floating LNG

  • Lee, Dong-Hyun;Ha, Mun-Keun;Kim, Soo-Young;Shin, Sung-Chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.307-322
    • /
    • 2014
  • With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO). The global Floating LNG (FLNG) market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.

액화천연가스 운반선(LNGC)의 발전 추세 (A Developing Tendency of Liquefied Natural Gas Carriers)

  • 이동섭
    • 해양환경안전학회지
    • /
    • 제15권3호
    • /
    • pp.269-274
    • /
    • 2009
  • LNGC(Liquefied Natural Gas Carrier)의 역사는 1959년 $5,000m^3$ 급 LNG선 "Methane Pioneer"호를 시작으로 1969년에는 $71,500m^3$ 급, 1973년에는 Moss Type의 최초 LNG운반선 "Norman Lady($87,600m^3$)호, 1980년대 $125,000m^3$ 급을 시작으로 1990년대를 거처 $135,000m^3$ 급, 2007년 $210,000m^3$급 그리고 2008년에는 $266,000m^3$ 급의 초대형 액화천연가스 운반선이 출현하였다. 또한 2006년 11월에는 기존 내 외연 기관이 아닌 발전기 기동으로 Propeller를 움직이는 DFDE(Duel Fuel Diesel Electric)엔진, 육상의 Storage Tank를 생략한 기화설비를 갖춘 LNG-RV(Re-gasification Vessel)와 주 기관은 Slow Diesel을 택하고, 운항 중 발생하는 BOG(Boil Off Gas)를 재액화시키는 설비를 갖춘 DRL(Diesel Re-Liquefaction)선박 및 해상 LNG 생산 저장시설인 LNG-FPSO(Floating Production and Storage Offshore), 그리 고 해상 LNG 인수기지 역할을 하는 LNG-FSRU(Floating Store and Re-gasification Unit) 등이 개발되었다. 이 논문에서는 LNG Project, 전 세계 에너지 시장과 LNGC의 발전 추세에 대하여 다루었다.

  • PDF

Floating LNG 기반기술에 관한 설계개선 연구 (철회된 논문입니다.) (Research of Design Improvement regarding Foundation Technologies for Floating LNG)

  • 이동현;하문근;김수영;신성철
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.220-230
    • /
    • 2014
  • Typical technical issues associated with Floating LNG (FLNG: FSRU and LNG FPSO) design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this paper, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of design improvement including new LNG-related technologies such as combined containment system will be presented to overcome the unrevealed challenges for the FLNG development.

Safety Assessment of LNG Transferring System subjected to gas leakage using FMEA and FTA

  • Lee, Jang-Hyun;Hwang, Seyun;Kim, Sungchan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.125-135
    • /
    • 2017
  • The paper considers the practical application of the FMEA(Failure Mode and Effect Analysis) method to assess the operational reliability of the LNG(Liquefied Natural Gas) transfer system, which is a potential problem for the connection between the LNG FPSO and LNG carrier. Hazard Identification (HAZID) and Hazard operability (HAZOP) are applied to identify the risks and hazards during the operation of LNG transfer system. The approach is performed for the FMEA to assess the reliability based on the detection of defects typical to LNG transfer system. FTA and FMEA associated with a probabilistic risk database to the operation scenarios are applied to assess the risk. After providing an outline of the safety assessment procedure for the operational problems of system, safety assessment example is presented, providing details on the fault tree of operational accident, safety assessment, and risk measures.

Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications

  • Ryu, Min Cheol;Jung, Jun Hyung;Kim, Yong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권6호
    • /
    • pp.537-553
    • /
    • 2016
  • This paper addresses the safety of two-row tank design by performing the extensive sloshing model tests. Owing to the uncertainties entangled with the scale law transforming the measured impact pressure up to the full scale one, so called comparative approach was taken to derive the design sloshing load. The target design vessel was chosen as 230 K LNG-FPSO with tow-row tank arrangement and the reference vessel as 138 K conventional LNG carrier, which has past track record without any significant failure due to sloshing loads. Starting with the site-specific metocean data, ship motion analysis was carried out with 3D diffraction-radiation program, then the obtained ship motion data was used as 6DOF tank excitation for subsequent sloshing model test and analysis. The statistical analysis was carried out with obtained peak data and the long-term sloshing load was determined out of it. It was concluded that the normalized sloshing impact pressure on 230 K LNG-FPSO with two-row tank arrangement is higher than that of convectional LNG carrier, hence requires the use of reinforced cargo containment system for the sake of failure-free operation without filling limitation.

부유식 천연액화가스(LNG) 터미널의 설계 기술 개발

  • 한용섭;이정한;김용수
    • 가스산업과 기술
    • /
    • 제5권1호
    • /
    • pp.39-47
    • /
    • 2002
  • With the expansion of natural gas demands in many countries, the necessity of LNG receiving terminals has been increased. The offshore LNG Floating Storage and Regasification Unit (FSRU) attracts attentions not only for a land based LNG receiving terminal alternative, but also for a feasible and economic solution. Nowadays, as the reliability of offshore oil and gas floating facilities and LNG carriers gains with proven worldwide operations, the FSRU can achieve a safety level that can be comparable to an onshore terminal. The design development related with safety features of the FSRU has been extensively carried out by oil and gas companies, shipyards, engineering companies, and equipment vendors, and has been successful so far in many fields. The construction of the FSRU can be achieved by integrating various technologies and experiences from many disciplines and many participating companies and vendors. In this paper, reviews on some of the important design features and design improvements on FSRU together with the practical construction aspects in cargo containment, vaporization system, ESD system, and operation modes, have been covered in comparison with actual LNG carrier, onshore receiving terminal, and FPSO systems. In order to materialize an FSRU project, the technical and economic justification has to be preceded. It is believed that once the safety and technical soundness is convinced, the FSRU can bring a higher project feasibility by reducing the overall construction time and cost. Through this study, an FSRU design readily applicable to an actual project has been developed by incorporating experiences gained from many marine and offshore projects. The wide use of proven standard technologies adopted in the series construction of LNG carriers and offshore FPSOs will bring the project efficiency and reliability.

  • PDF