• Title/Summary/Keyword: LMTD

Search Result 26, Processing Time 0.023 seconds

Compute simulation of a three-stage condensation heat pump (3단 응축 고온/고효율 열펌프의 전산해석)

  • 이윤학;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.303-314
    • /
    • 1998
  • In this study, the performance of a multi-stage condensation heat pump was examined. Computer simulation programs were developed for 1-stage, 2-stage, and 3-stage heat pumps and R11, R123, R141b were tested as working fluids. The results showed that coefficients of performance(COPs) of an optimized 3-stage condensation heat pump are 25∼40% higher than those of a conventional 1-stage heat pump. The increase in COP, however, differed among the fluids tested. The improvement in COP largely stems from the decrease in average LMTD values in the condensers of the multi-stage system. For the 3-stage condensation heat pumps, optimized UA values of three condensers were determined to be 30∼40% of the UA value of the total condenser regardless of the working fluid. When the amount of cooling water entering into the intermediate and high-stage subcoolers is roughly 10% of the total condenser cooling water respectively, the optimum performance was achieved for the 3-stage condensation heat pump.

  • PDF

An Experimental Study on the heat transfer characteristics and performance of storage tanks with mantle heat exchanger (맨틀형 축열조의 열전달 성능 및 특성에 관한 실험적 연구)

  • Kang, Y.H.;Kwak, H.Y.;Yoon, H.G.;Yoo, C.G.;Yoon, H.S.;Chun, W.G.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • The heat transfer characteristics of horizontal and vertical mantle heat storage tanks are studied in order to replace the tank-coil heat exchanger for application in thermosyphon solar water heaters. In this study, 5 mantle storage tanks with different geometric shape are manufactured into stainless steel and each tank is tested. For the test, The inlet flow rate of the heat transfer fluid is maintained 1.2 lpm consistently. The heat transfer fluid temperature through the mantle is $70{\pm}1^{\circ}C$. The temperatures of 26 points included the ambient temperature are measured at every one minute. The measured data are used to calculate the overall heat transfer coefficient(UA) using the LMTD(Log Mean Temperature Difference) method and it is used on the analysis of the heat transfer characteristics to search for optimum arrangement.

  • PDF

Computer-Aided Optimal Design of Heat Exchangers (컴퓨터에 의한 열교환기 최적설계)

  • Song Tae Ho;Oh Jin Kook;Yoon Chang Hyun;Huh Gyoung Jae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.10 no.4
    • /
    • pp.297-303
    • /
    • 1981
  • Optimal design of shell and tube heat exchanger system with the working fluids which may condense outside the tubes has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel series, tube diameter, distribution pitch, tube side pressure loss, baffle cut and shell side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial series and number of baffles were all characterized according to the standard. Exhaustive search method was used to construct a computer program together with the calculation of heat transfer rate by LMTD method. stress analysis of maj or parts was made to examine their dimensions satisfying heat transfer and pressure loss requirements. Cost estimation based on the installation, operation and maintenance was also made, A few representative variables, heat transfer area, shell diameter and pressure loss, were used to express cost function, finally giving the optimal selection of all tentative solutions.

  • PDF

Heat Transfer Characteristics of Tube Bundle Type Beat Exchanger for LFG and LNG Mixed Fuel (LFG와 LNG 혼합연료의 조성에 따른 다관형 열교환기에서의 열전달 특성)

  • Jeon Yong-Han;Kim Yong;Seo Tae-Beom
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.45-51
    • /
    • 2006
  • The purpose of this study is to investigate experimentally the heat transfer characteristics of combustion gas or a mixture fuel of LFG and LNG as compared LFG, LNG A Pilot combustion system is constructed. Tube bundle type heat exchangers with vertical and horizontal baffles are used, and the experiment is carried out for different operating conditions, the heating value, the concentration of methane (44.5%, 54.5%). The results show that the Nusselt number of LNG is higher than that of LFG at the same Reynolds number, and in case LFG, the Nusselt number of the mixture of LFG and LNG is larger than that of LFG alone. Therefore, heat transfer is improved by using LFG that is added to LNG pertinently, if and instability of LFG supply will be relaxed.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

A Study on Heat Transfer Characteristics for Cross Flow Heat Exchanger of Staggered Arrangement (어긋나기배열 직교류 열교환기의 열전달특성에 관한 연구)

  • Yoo, Jae-Hwan;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1016-1023
    • /
    • 2012
  • Because heat exchanger consists of many circular tubes, the analysis of local heat transfer and pressure drop at the surrounding of circular tubes, performance and calculation of size, economics play important roles in design. In this study, This study conducted experiment and analysis in order to observe convective heat transfer coefficient LMTD (logarithm mean temperature difference) and pressure losses according to water temperature and air flow rate using a cross flow heat exchanger of staggered arrangement. This heat exchanger was composed of staggered arrangement for five rows and seven columns of tube banks, and the condition of experiment and analysis are $40{\sim}65^{\circ}C$ of water temperature and $5.0{\sim}12.3m^3/s$ of air flow rate. As a result of it, since air density decreases as water temperature and flow rate increases, Reynolds number decreases with characteristics of low flow velocity but mean heat transfer coefficient increases with air flow rate increase, heat transfer performance has been improved and pressure losses decreased. And since heat transfer rate shows about 8~12% and pressure drop around 0.01~7.5% error as the analysis result, the feasibility of this study could be evaluated.