• 제목/요약/키워드: LMNN

검색결과 5건 처리시간 0.021초

Discriminant Metric Learning Approach for Face Verification

  • Chen, Ju-Chin;Wu, Pei-Hsun;Lien, Jenn-Jier James
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.742-762
    • /
    • 2015
  • In this study, we propose a distance metric learning approach called discriminant metric learning (DML) for face verification, which addresses a binary-class problem for classifying whether or not two input images are of the same subject. The critical issue for solving this problem is determining the method to be used for measuring the distance between two images. Among various methods, the large margin nearest neighbor (LMNN) method is a state-of-the-art algorithm. However, to compensate the LMNN's entangled data distribution due to high levels of appearance variations in unconstrained environments, DML's goal is to penalize violations of the negative pair distance relationship, i.e., the images with different labels, while being integrated with LMNN to model the distance relation between positive pairs, i.e., the images with the same label. The likelihoods of the input images, estimated using DML and LMNN metrics, are then weighted and combined for further analysis. Additionally, rather than using the k-nearest neighbor (k-NN) classification mechanism, we propose a verification mechanism that measures the correlation of the class label distribution of neighbors to reduce the false negative rate of positive pairs. From the experimental results, we see that DML can modify the relation of negative pairs in the original LMNN space and compensate for LMNN's performance on faces with large variances, such as pose and expression.

신경망 모형을 적용한 금강 공주지점의 수질예측 (Water Quality Forecasting at Gongju station in Geum River using Neural Network Model)

  • 안상진;연인성;한양수;이재경
    • 한국수자원학회논문집
    • /
    • 제34권6호
    • /
    • pp.701-711
    • /
    • 2001
  • 수질 인자들은 다양하고 관계가 복잡하여 수질 변화를 예측하는데 많은 어려움이 있다. 따라서 입력과 출력이 비교적 용이하고 비선형 예측에 적합한 신경망 모형을 이용하여 금강유역 공주지점의 DO, BOD, TN에 대한 월수질 예측을 수행하고 ARIMA 모형과 비교하여 적용 가능성을 검토하였다. 사용된 신경망 모형은 학습을 위해 BP(Back Propagation) 알고리즘을 적용하였으며 학습을 향상시키기 위한 모멘트-적응학습율(Moment-Adaptive learming rate) 방법을 이용한 MANN 모형, 레번버그-마쿼트(Levenberg-Marquardt) 방법을 이 용한 LMNN 모형, 그리고 정성적인 판단인자를 첨가하여 정량적인 월 수질 자료와 분별, 학습하 도록 은닉층을 분리한 MNN 모형으로 구분하였다. 대체로 신경망 모형의 예측치가 실측치에 근사한 결과를 보였으며, 은닉층을 분리한 MNN 모형이 가장 우수한 결과를 보였다.

  • PDF

유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (I) 유량-수질 예측모형의 적용 (A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model)

  • 연인성;안상진
    • 한국수자원학회논문집
    • /
    • 제38권7호
    • /
    • pp.565-574
    • /
    • 2005
  • 평창강 수질자동측정망 실시간 자료를 이용하여 강우시와 무강우시로 구분하여 분석하였다. 강우시에 측정된 TOC 자료는 무강우시 측정된 자료에 비해 평균값, 최대값, 표준편차가 크게 나타났으며, 강우시의 DO 자료는 무강우시에 측정된 자료보다 낮아 유량이 수질변화에 영향을 미치는 것으로 분석되었다. 신경망 모형과 뉴로-퍼지 모형으로 수질예측 모형을 구성하고, 적용하였다. LMNN, MDNN, ANFIS 모형은 TOC 모의에서 DO 예측에서는 LMNN, MDNN 모형이 ANFIS 모형보다 좋은 결과를 보였으며, 정량적 자료에 정성적 자료인 시간을 학습한 MDNN 모형이 가장 작은 오차를 보였다. 하천의 실시간적 관리를 위해서는 유량과 수질의 측정이 동일한 지점에서 동시간적으로 이루어져야 보다 효과적이다. 그러나 수질자동측정망 지점과 T/M 수위관측소가 원거리에 위치한 경우들이 있으며, 평창강 수질자동측정망 지점이 그 중 하나이다. 연구에서는 평창강 수질자동측정망 지점의 유출예측을 위한 신경망 모형을 구성하여 수질예측 모형과 연계하였으며, 연계된 모형은 수질예측에 개선된 결과를 보였다.

추계학적 비선형 모형을 이용한 달천의 실시간 수질예측 (Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model)

  • 연인성;조용진;김건흥
    • 상하수도학회지
    • /
    • 제19권6호
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

단일 영상과 LM 신경망 퍼지제어기를 적용한 장애물 회피 시스템 (Obstacle Avoidance System Using a Single Camera and LMNN Fuzzy Controller)

  • 유성구;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.192-197
    • /
    • 2009
  • In this paper, we proposed the obstacle avoidance system using a single camera image and LM(Levenberg-Marquart) neural network fuzzy controller. According to a robot technology adapt to various fields of industry and public, the robot has to move using self-navigation and obstacle avoidance algorithms. When the robot moves to target point, obstacle avoidance is must-have technology. So in this paper, we present the algorithm that avoidance method based on fuzzy controller by sensing data and image information from a camera and using the LM neural network to minimize the moving error. And then to verify the system performance of the simulation test.