• Title/Summary/Keyword: LM guide

Search Result 64, Processing Time 0.018 seconds

Experimental Verification of a Liquid Damper with Changeable Natural Frequency for Building Response Control (고유진동수 조절이 가능한 액체댐퍼의 건물응답 제어실험)

  • Kim, Dong-Ik;Min, Kyung-Won;Park, Ji-Hun;Kim, Jae-Keon;Hwang, Kyu-Seok;Gil, Yong-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2012
  • This study deals with the experiments of liquid dampers with multi cells whose vertical tubes are divided into several square columns for easily changing natural frequencies. Shaking table test is performed to verify control effectiveness of the dampers which are installed on a building structure. To design liquid dampers, a 64-story building structure is reduced to a SDOF structure with 1/20 of similitude laws based on acceleration. The structure model is made up to adjust its mass and stiffness easily, with separate mass and drive parts. Mass parts indicate real structure's weights and drive parts indicate real structure's stiffness with springs and LM guides. Manufactured liquid damper has 18 cells and its natural frequency ranges are 0.65Hz to 0.81Hz. Shaking table test is carried out with one way excitation to compare with only accelerations of a large-scale structure and a structure installed with liquid dampers. Control performance of the liquid damper is expressed by the transfer function from shaking table accelerations to the large-scale structure ones. Testing results show that the liquid damper reduced a large-scale structure's response by tuned natural frequencies.

Development of Automatic Hole Position Measurement System using the CCD-camera (CCD-카메라를 이용한 홀 변위 자동측정시스템 개발)

  • 김병규;최재영;강희준;노영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about $\pm$0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality

  • PDF

Vibration Analysis of Film Winding Core Automatic Supply System Using US Military Standards (미 군사규격을 적용한 권취 코어 자동공급장치의 진동해석)

  • Go, Jeong-Il;Park, Soo-Hyun;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.91-99
    • /
    • 2022
  • By applying METHOD 514.8 of the US military standard MIL-STD-810H, vibration analysis of the winding core automatic feeding device was performed during vehicle transportation. The contact point between the LM guide and main support frame was weak in the vertical axis, transverse axis, and longitudinal axis during the transportation of the automatic winding core feeder vehicle, and the maximum equivalent stress was 236.31 MPa in the longitudinal axis. When random vibration was applied, the safety margin in the longitudinal direction was 0.26, indicating low safety. The safety margin was changed by increasing the damage factor to 0.1. Finally, the safety margin was improved to 3.48 to secure safety. Resonance occurred with a Q factor of 9.34 in the harmonic response to which the RMS value of the ASD data was input, and the vertical axis safety margin was derived as 0.16. When the damping factor was 0.15, the Q factor was 3.37, and resonance was avoided with a safety margin of 6.62.

The Design of Dashboard for Instructor Feedback Support Based on Learning Analytics (학습분석 기반 교수자 피드백 제공을 위한 대시보드 설계)

  • Lim, SungTae;Kim, EunHee
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.6
    • /
    • pp.1-15
    • /
    • 2017
  • The purpose of this study is to design a LMS(Learning Management System) dashboard for instructor feedback support based on learning analytics and to apply a LMS dashboard incorporating such taxonomy which allows an instructor to give a student personalized feedback according to the class content and a student's traits. In the dashboard design phase, usable instructional data were selected from LMS based on feedback taxonomy in terms of learning analytics. Two validity tests were conducted with 8 instructional technologists over 8 years of experience, and were revised accordingly. The final dashboard screen has three parts: A comprehensive analysis screen to provide appropriate feedback based on instructor feedback taxonomy analysis, a summary screen for learner analysis, and a recommended feedback guide screen. Detailed analysis information are provided through other dashboards that are displayed in eight screens: login analysis, learning information confirmation analysis, teaching materials learning analysis, assignment/tests, and posts analysis. All of these dashboards were represented by analysis information and data based on learner analytics through visualization methods including graphs and tables. The implications of educational utilization of the dashboard for instructor feedback support based on learning analytics and the future researches were suggested based on these results.