• Title/Summary/Keyword: LLMs (Large Language Models)

Search Result 33, Processing Time 0.028 seconds

Leveraging LLMs for Corporate Data Analysis: Employee Turnover Prediction with ChatGPT (대형 언어 모델을 활용한 기업데이터 분석: ChatGPT를 활용한 직원 이직 예측)

  • Sungmin Kim;Jee Yong Chung
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.19-47
    • /
    • 2024
  • Organizational ability to analyze and utilize data plays an important role in knowledge management and decision-making. This study aims to investigate the potential application of large language models in corporate data analysis. Focusing on the field of human resources, the research examines the data analysis capabilities of these models. Using the widely studied IBM HR dataset, the study reproduces machine learning-based employee turnover prediction analyses from previous research through ChatGPT and compares its predictive performance. Unlike past research methods that required advanced programming skills, ChatGPT-based machine learning data analysis, conducted through the analyst's natural language requests, offers the advantages of being much easier and faster. Moreover, its prediction accuracy was found to be competitive compared to previous studies. This suggests that large language models could serve as effective and practical alternatives in the field of corporate data analysis, which has traditionally demanded advanced programming capabilities. Furthermore, this approach is expected to contribute to the popularization of data analysis and the spread of data-driven decision-making (DDDM). The prompts used during the data analysis process and the program code generated by ChatGPT are also included in the appendix for verification, providing a foundation for future data analysis research using large language models.

Knowledge Transfer in Multilingual LLMs Based on Code-Switching Corpora (코드 스위칭 코퍼스 기반 다국어 LLM의 지식 전이 연구)

  • Seonghyun Kim;Kanghee Lee;Minsu Jeong;Jungwoo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.301-305
    • /
    • 2023
  • 최근 등장한 Large Language Models (LLM)은 자연어 처리 분야에서 눈에 띄는 성과를 보여주었지만, 주로 영어 중심의 연구로 진행되어 그 한계를 가지고 있다. 본 연구는 사전 학습된 LLM의 언어별 지식 전이 가능성을 한국어를 중심으로 탐구하였다. 이를 위해 한국어와 영어로 구성된 코드 스위칭 코퍼스를 구축하였으며, 기본 모델인 LLAMA-2와 코드 스위칭 코퍼스를 추가 학습한 모델 간의 성능 비교를 수행하였다. 결과적으로, 제안하는 방법론으로 학습한 모델은 두 언어 간의 희미론적 정보가 효과적으로 전이됐으며, 두 언어 간의 지식 정보 연계가 가능했다. 이 연구는 다양한 언어와 문화를 반영하는 다국어 LLM 연구와, 소수 언어를 포함한 AI 기술의 확산 및 민주화에 기여할 수 있을 것으로 기대된다.

  • PDF

Research on improving KGQA efficiency using self-enhancement of reasoning paths based on Large Language Models

  • Min-Ji Seo;Myung-Ho Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.39-48
    • /
    • 2024
  • In this study, we propose a method to augment the provided reasoning paths to improve the answer performance and explanatory power of KGQA. In the proposed method, we utilize LLMs and GNNs to retrieve reasoning paths related to the question from the knowledge graph and evaluate reasoning paths. Then, we retrieve the external information related to the question and then converted into triples to answer the question and explain the reason. Our method evaluates the reasoning path by checking inference results and semantically by itself. In addition, we find related texts to the question based on their similarity and converting them into triples of knowledge graph. We evaluated the performance of the proposed method using the WebQuestion Semantic Parsing dataset, and found that it provides correct answers with higher accuracy and more questions with explanations than the reasoning paths by the previous research.

Automation of M.E.P Design Using Large Language Models (대형 언어 모델을 활용한 설비설계의 자동화)

  • Park, Kyung Kyu;Lee, Seung-Been;Seo, Min Jo;Kim, Si Uk;Choi, Won Jun;Kim, Chee Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.237-238
    • /
    • 2023
  • Urbanization and the increase in building scale have amplified the complexity of M.E.P design. Traditional design methods face limitations when considering intricate pathways and variables, leading to an emergent need for research in automated design. Initial algorithmic approaches encountered challenges in addressing complex architectural structures and the diversity of M.E.P types. However, with the launch of OpenAI's ChatGPT-3.5 beta version in 2022, new opportunities in the automated design sector were unlocked. ChatGPT, based on the Large Language Model (LLM), has the capability to deeply comprehend the logical structures and meanings within training data. This study analyzed the potential application and latent value of LLMs in M.E.P design. Ultimately, the implementation of LLM in M.E.P design will make genuine automated design feasible, which is anticipated to drive advancements across designs in the construction sector.

  • PDF

Proposal for the Utilization and Refinement Techniques of LLMs for Automated Research Generation (관련 연구 자동 생성을 위한 LLM의 활용 및 정제 기법 제안)

  • Seung-min Choi;Yu-chul, Jung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.275-287
    • /
    • 2024
  • Research on the integration of Knowledge Graphs (KGs) and Language Models (LMs) has been consistently explored over the years. However, studies focusing on the automatic generation of text using the structured knowledge from KGs have not been as widely developed. In this study, we propose a methodology for automatically generating specific domain-related research items (Related Work) at a level comparable to existing papers. This methodology involves: 1) selecting optimal prompts, 2) extracting triples through a four-step refinement process, 3) constructing a knowledge graph, and 4) automatically generating related research. The proposed approach utilizes GPT-4, one of the large language models (LLMs), and is desigend to automatically generate related research by applying the four-step refinement process. The model demonstrated performance metrics of 17.3, 14.1, and 4.2 in Triple extraction across #Supp, #Cont, and Fluency, respectively. According to the GPT-4 automatic evaluation criteria, the model's performamce improved from 88.5 points vefore refinement to 96.5 points agter refinement out of 100, indicating a significant capability to automatically generate related research at a level similar to that of existing papers.

Large Language Model-based SHAP Analysis for Interpretation of Remaining Useful Life Prediction of Lithium-ion Battery (거대언어모델 기반 SHAP 분석을 이용한 리튬 이온 배터리 잔존 수명 예측 기법 해석)

  • Jaeseung Lee;Jehyeok Rew
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.51-68
    • /
    • 2024
  • To safely operate lithium-ion batteries that power mobile electronic devices, it is crucial to accurately predict the remaining useful life (RUL) of the battery. Recently, with the advancement of machine learning technologies, artificial intelligence (AI)-based RUL prediction models for batteries have been actively researched. However, existing models have limitations as the reasoning process within the models is not transparent, making it difficult to fully trust and utilize the predicted values derived from machine learning. To address this issue, various explainable AI techniques have been proposed, but these techniques typically visualize results in the form of graphs, requiring users to manually analyze the graphs. In this paper, we propose an explainable RUL prediction method for lithium-ion batteries that interprets the reasoning process of the prediction model in textual form using SHAP analysis based on large language models (LLMs). Experimental results using publicly available lithium-ion battery datasets demonstrated that the LLM-based SHAP analysis enabled us to concretely understand the model's prediction rationale in textual form.

A Study on the Evaluation Methods for Assessing the Understanding of Korean Culture by Generative AI Models (생성형 AI 모델의 한국문화 이해 능력 평가 방법에 관한 연구)

  • Son Ki Jun;Kim Seung Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.421-428
    • /
    • 2024
  • Recently, services utilizing large-scale language models (LLMs) such as GPT-4 and LLaMA have been released, garnering significant attention. These models can respond fluently to various user queries, but their insufficient training on Korean data raises concerns about the potential to provide inaccurate information regarding Korean culture and language. In this study, we selected eight major publicly available models that have been trained on Korean data and evaluated their understanding of Korean culture using a dataset composed of five domains (Korean language comprehension and cultural aspects). The results showed that the commercial model HyperClovaX exhibited the best performance across all domains. Among the publicly available models, Bookworm demonstrated superior Korean language proficiency. Additionally, the LDCC-SOLAR model excelled in areas related to understanding Korean culture and language.

A Study on the Evaluation of LLM's Gameplay Capabilities in Interactive Text-Based Games (대화형 텍스트 기반 게임에서 LLM의 게임플레이 기능 평가에 관한 연구)

  • Dongcheul Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.87-94
    • /
    • 2024
  • We investigated the feasibility of utilizing Large Language Models (LLMs) to perform text-based games without training on game data in advance. We adopted ChatGPT-3.5 and its state-of-the-art, ChatGPT-4, as the systems that implemented LLM. In addition, we added the persistent memory feature proposed in this paper to ChatGPT-4 to create three game player agents. We used Zork, one of the most famous text-based games, to see if the agents could navigate through complex locations, gather information, and solve puzzles. The results showed that the agent with persistent memory had the widest range of exploration and the best score among the three agents. However, all three agents were limited in solving puzzles, indicating that LLM is vulnerable to problems that require multi-level reasoning. Nevertheless, the proposed agent was still able to visit 37.3% of the total locations and collect all the items in the locations it visited, demonstrating the potential of LLM.

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

Enhancing Career Development Utilizing LLM for Targeted Learning Pathway (경력 개발 증진을 위한 LLM 기반 맞춤형 학습 경로 개발)

  • Mahisha Patel;Vishakha Tyagi;Isabel Hyo Jung Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.460-467
    • /
    • 2024
  • Targeted career development is critical for student success but is often lacking for underrepresented students at many public higher-education institutions due to insufficient career counseling resources. We propose an innovative career development tool leveraging Large Language Models (LLMs) to enhance student career prospects through three steps: (1) identifying relevant jobs by analyzing resumes, (2) pinpointing skill gaps using external resources such as classroom assignments, in addition to resumes, and (3) suggesting customized learning paths. Our tool accurately matches jobs in real-world settings, identifies true skill gaps while reducing false positives, and provides learning paths that receive high satisfaction scores from faculty. Future research will enhance the solution's capabilities by incorporating diverse external resources and leveraging advancements in LLM technology to better support early-stage career seekers.