• Title/Summary/Keyword: LLC converters

Search Result 58, Processing Time 0.021 seconds

The Dimmable Single-stage Asymmetrical LLC Resonant LED Driver with Low Voltage Stress Across Switching Devices

  • Kim, Seong-Ju;Kim, Young-Seok;Kim, Choon-Taek;Lee, Joon-Min;La, Jae-Du
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2031-2039
    • /
    • 2015
  • In the LED lighting industry, the dimming function in the LED lamp is required by demands of many consumers. To drive this LED lighting, various types of power converters have been applied. Among them, an LLC resonant converter could be applied for high power LED lighting because of its high efficiency and high power density, etc. The function of power factor correction (PFC) might be added to it. In this paper, a dimmable single-stage asymmetrical LLC resonant converter is proposed. The proposed converter performs both input-current harmonics reduction and PFC using the discontinuous conduction mode (DCM). Also, the lower voltage stress across switching devices as well as the zero voltage switching (ZVS) in switching devices is realized by the proposed topology. It can reduce cost and has high efficiency of the driver. In addition, the regulation of the output power by variable switching frequency can vary the brightness of a light. In the proposed converter, one of the attractive advantages doesn’t need any extra control circuits for the dimming function. To verify the performance of the proposed converter, simulation and experimental results from a 300W prototype are provided.

The Secondary LLC Series Resonant Converter for the Boost DC/DC Converter (변압기 2차측 LLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Lee Hyun-Kwan;Lee Gi-Sik;Chung Bong-Geon;Kong Young-Su;Kim Eun-Soo;Cha In-Su;Yoon Jeong-Phil
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.277-280
    • /
    • 2006
  • Recently, the high frequency isolated boost DC/DC converter has been widely used for the PCS (Power Conditioning System) system because of its small size and low cost. However, the high frequency isolated boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have the problems such as the high conduction losses and the surge voltage due to the high circulating current and the leakage inductance, respectively. To overcome this problems, in this paper the secondary LLC resonant converter is proposed, and the experimental results of the secondary LLC series resonant converter for boost DC/DC converter are verified on the simulation based on the theoretical analysis and the 1kW experimental prototype.

  • PDF

Multimode Hybrid Control Strategy of LLC Resonant Converter in Applications with Wide Input Voltage Range

  • Li, Yan;Zhang, Kun;Yang, Shuaifei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes a multimode hybrid control strategy that can achieve zero-voltage switching of primary switches and zero-current switching of secondary rectifier diodes in a wide input voltage range for full-bridge LLC resonant converters. When the input voltage is lower than the rated voltage, the converter operates in Mode 1 through the variable-frequency control strategy. When the input voltage is higher than the rated voltage, the converter operates in Mode 2 through the VF and phase-shift control strategy until the switching frequency reaches the upper limit. Then, the converter operates in Mode 3 through the constant-frequency and phase-shift control strategy. The secondary-side diode current will operate in the discontinuous current mode in Modes 1 and 3, whereas it will operate in the boundary current mode in Mode 2. The current RMS value and conduction loss can be reduced in Mode 2. A detailed theoretical analysis of the operation principle, the voltage gain characteristics, and the realization method is presented in this paper. Finally, a 500 W prototype with 100-200 V input voltage and 40 V output voltage is built to verify the feasibility of the multimode hybrid control strategy.

Novel Hybrid Converter for the On-Board Charger of Electric Vehicle (전기자동차용 온보드 충전기를 위한 새로운 하이브리드 컨버터)

  • Vu, Hai-Nam;Tran, Dai-Duong;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.52-53
    • /
    • 2015
  • This paper introduces a novel hybrid converter combining a full-bridge soft switching converter and a full-bridge LLC converter. In this topology all the primary switches can achieve ZVS and ZCS all over the operation range. An additional switch and a diode are added in the secondary side of full-bridge converter to eliminate the circulating current and to provide a separate freewheeling path. The hybrid structure makes it possible to deliver the power to the secondary all the time of operation, thereby improving the efficiency. The proposed topology is suitable for the applications such as on-board chargers for electric vehicles and high power dc-dc converters. A 6.6-kW prototype converter was implemented and 97.5% efficiency was obtained through the experiments.

  • PDF

High Efficiency Switch Mode Line Transformer (SMLT) Composed of Load Sharing Dual Modules (부하평형 듀얼 모듈로 구성된 고효율 스위치 모드 라인 트랜스포머(SMLT))

  • Kim, Jin-Hong;Yang, Jung-Woo;Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.188-194
    • /
    • 2020
  • This paper presents a high-efficiency Switch Mode Line Transformer (SMLT) composed of load-shared dual modules, which is based on the AC/AC LLC resonant converter. Given that the conventional adaptor is usually composed of two power stages, namely, the PFC and DC/DC converters, its system size can be increased according to the output power. However, given that the proposed SMLT can separate the PFC converter from the adaptor, the size reduction of the system can be achieved. Meanwhile, the SMLT with a single module has the limit of the size reduction because of a high resonant current. Thus, it can be configured with dual or multiple modules to reduce the resonant current. Then, their load sharing can be guaranteed by only the proposed transformer structure without an extra current controller. The validity of the proposed converter is proven through a 850-W prototype.

A Novel SLLC Series Resonant Converter for The Boost DC/DC Converter (SLLC 직렬공진컨버터 적용 승압형 DC/DC 컨버터)

  • Kim, Eun-Soo;Kang, Sung-In;Chung, Bong-Geun;Cha, In-Su;Yoon, Jeong-Phil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.56-64
    • /
    • 2007
  • Recently, the high frequency link boost DC/DC converter has been used widely for PCS (Power Conditioning System) because of the requirements of small size and low cost. However, the high frequency link boost DC/DC converters applied the conventional voltage-fed converter and current-fed converter have some problems like high conduction losses and high surge voltage due to high circulating current and leakage inductance, respectively. To improve these problems, a novel secondary LLC (called SLLC) series resonant converter is proposed in this paper and its theoretical analysis, its operating waveforms, simulation and experimental results for a boost DC/DC converter using SLLC series resonant topology verifies the proposed topology. 800W experimental prototype is tested.

Analysis and Design of Function Decoupling High Voltage Gain DC/DC Converter

  • Wei, Yuqi;Luo, Quanming;Lv, Xingyu;Sun, Pengju;Du, Xiong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.380-393
    • /
    • 2019
  • Traditional boost converters have difficulty realizing high efficiency and high voltage gain conversion due to 1) extremely large duty cycles, 2) high voltage and current stresses on devices, and 3) low conversion efficiency. Therefore, a function decoupling high voltage gain DC/DC converter composed of a DC transformer (DCX) and an auxiliary converter is proposed. The role of DCX is to realize fixed gain conversion with high efficiency, whereas the role of the auxiliary converter is to regulate the output voltage. In this study, different forms of combined high voltage gain converters are compared and analyzed, and a structure is selected for the function decoupling high voltage gain converter. Then, topologies and control strategies for the DCX and auxiliary converter are discussed. On the basis of the discussion, an optimal design method for circuit parameters is proposed, and design procedures for the DCX are described in detail. Finally, a 400 W experimental prototype based on the proposed optimal design method is built to verify the accuracy of the theoretical analysis. The measured maximum conversion efficiency at rated power is 95.56%.

A Hybrid PWM-Resonant DC-DC Converter for Electric Vehicle Battery Charger Applications

  • Lee, Il-Oun
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1158-1167
    • /
    • 2015
  • In this paper, a new hybrid DC-DC converter is proposed for electric vehicle 3.3 kW on-board battery charger applications, which can be modulated in a phase-shift manner under a fixed frequency or frequency variation. By integrating a half-bridge (HB) LLC series resonant converter (SRC) into the conventional phase-shift full-bridge (PSFB) converter with a full-bridge rectifier, the proposed converter has many advantages such as a full soft-switching range without duty-cycle loss, zero-current-switching operation of the rectifier diodes, minimized circulating current, reduced filter inductor size, and better utilization of transformers than other hybrid dc-dc converters. The feasibility of the proposed converter has been verified by experimental results under an output voltage range of 250-420V dc at 3.3 kW.

Digital Control of Bidirectional Resonant Converters (양방향 공진형 컨버터의 디지털 제어)

  • Park, Minjun;Joung, Minjae;Choi, Byungcho
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.33-34
    • /
    • 2013
  • 본 논문은 양방향으로 동작하는 직렬 공진형 DC-DC 컨버터의 디지털 제어기 해석 및 설계에 대해 기술한다. LLC 양방향 공진형 컨버터 전력 변환단 동특성을 기반으로 소신호 해석을 이용한 디지털 제어기를 설계하고, DSP를 이용하여 디지털 제어기를 구현한다. 디지털 제어기는 Emulation 방식을 이용하여 설계한다. 개발된 디지털 제어기를 300W급 공진형 컨버터 실험보드에 적용하여 디지털 제어방식의 전원단의 동특성 및 폐루프 성능을 검증한다. 제어기 설계의 이론 검증 및 분석은 PSIM Simulation과 실험 측정으로 비교 검증한다.

  • PDF

Design and Implementation of an Active EMI Filter for Common-Mode Noise Reduction

  • Lee, Kuk-Hee;Kang, Byeong-Geuk;Choi, Yongoh;Chung, Se-Kyo;Won, Jae-Sun;Kim, Hee-Seung
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1236-1243
    • /
    • 2016
  • This paper presents the analysis and design of an active electromagnetic interference (EMI) filter (AEF) for the common-mode (CM) noise reduction of switching power converters. The features of the several types of AEFs are discussed and compared in terms of implementation. The feed-forward AEF with a voltage-sensing and voltage-cancellation (VSVC) structure is implemented for an LLC resonant converter to replace a multiple-stage passive EMI filter and thereby reduce CM noise. The characteristics and performance of the VSVC-type AEF are investigated through theoretical and experimental works.