• Title/Summary/Keyword: LI4

Search Result 6,300, Processing Time 0.033 seconds

Variation of Li Diffusion Coefficient during Delithiation of Spinel LiNi0.5Mn1.5O4

  • Rahim, Ahmad Syahmi Abdul;Kufian, Mohd Zieauddin;Arof, Abdul Kariem Mohd;Osman, Zurina
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.128-137
    • /
    • 2022
  • For this study, the sol gel method was used to synthesize the spinel LiNi0.5Mn1.5O4 (LNMO) electrode material. Structural, morphological, electrochemical, and kinetic aspects of the LNMO have been characterized. The synthesized LNMO was indexed with the Fd3m cubic space group. The excellent capacity retention indicates that the spinel framework of LNMO has the ability to withstand high rate charge-discharge throughout long cycle tests. The Li diffusion coefficient (DLi) changes non-monotonically across three orders of magnitude, from 10-9 to 10-12 cm2 s-1 determined from GITT method. The variation of DLi seemed to be related to three oxidation reactions that happened throughout the charging process. A small dip in DLi at the beginning stage of Li deintercalation is correlated with the oxidation of Mn3+ to Mn4+. While two pronounced DLi minima at 4.7 V and 4.75 V are due to the oxidation of Ni2+/Ni3+ and Ni3+/Ni4+ respectively. The depletion of DLi at the high voltage region is attributed to the occurrence of two successive phase transformation phenomena.

Study of molecular motion by 1H NMR relaxation in ferroelectric LiH3(SeO3)2, Li2SO4·H2O, and LiN2H5SO4 single crystals

  • Park, Sung Soo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • The proton NMR line widths and spin-lattice relaxation rates, $T_1^{-1}$, of ferroelectric $LiH_3(SeO_3)_2$, $Li_2SO_4{\cdot}H_2O$, and $LiN_2H_5SO_4$ single crystals were measured as a function of temperature. The line width measurements reveal rigid lattice behavior of all the crystals at low temperatures and line narrowing due to molecular motion at higher temperatures. The temperature dependences of the proton $T_1^{-1}$ for these crystals exhibit maxima, which are attributed to the effects of molecular motion by the Bloembergen - Purcell - Pound theory. The activation energies for the molecular motions of $^1H$ in these crystals were obtained. From these analysis, $^1H$ in $LiH_3(SeO_3)_2$ undergoes molecular motion more easily than $^1H$ in $LiN_2H_5SO_4$ and $Li_2SO_4{\cdot}H_2O$ crystals.

Electrochemical Properties of LiCoO2 Prepared by Mechanochemical Process (Mechanochemical Process로 제조된 LiCoO2의 전기화학적 특성)

  • Cho, Byung-Won;Lee, Joong Kee;Lee, Jae-Ryong;Kim, Su-Jin;Lee, Kwan-Young;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.69-75
    • /
    • 2008
  • Discharge capacity of $LiCoO_2$ in preparation by mechanochemical process decreased remarkably over 4.3V. However, Zr coating of $LiCoO_2$ showed very stable electrochemical properties up to 4.5V. Zr coating of $LiCoO_2$ in this experiment showed the discharge capacity of 197 mAh/g at 3.0-4.5V, and it maintained 96% of the initial discharge capacity after 50 cycle of charge/discharge.

Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure (리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동)

  • Huang, Cheng-Zhu;Kim, Ho-Jin;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.292-297
    • /
    • 2005
  • $LiMO_{2}(M=Co,Ni)$ samples were synthesized with $Li_{2}CO_{3},\;Co_{3}O_{4}$, and NiO by the solid-state reaction method. In the case of $LiCoO_{2}$, at low temperature$(T=400^{\circ}C)$ spinel structure was synthesized and the obtained spinel phase was transformed to layered phase at high temperature$(T\ge600^{\circ}C)$. The phase transition behaviors of $LiCoO_{2}$ were investigated with various heating temperature and time. The rate of transition was directly proportional to the concentrations of reactant, and activation energy of reaction was around 6.76 kcal/mol. When CoO(rock salt structure) was used as a starting material instead of $Co_{3}O_{4}$(spinel structure), layered structure of $LiCoO_{2}$ was obtained at low temperature. In the case of $LiNiO_{2}$ the transition from layered structure to rock salt structure occurred easily by disordering/ordering reaction, but did not occur in $LiCoO_{2}$. The difference in metal ion radii in $LiCoO_{2}$ and $LiNiO_{2}$ results in different behaviors of phase transitions.

Synthesis of Li4/3Mn5/3O4 by Sol-Gel Process and its Electrochemical Properties (졸-겔법에 의한 Li4/3Mn5/3O4의 합성 및 전기화학적 특성)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.80-84
    • /
    • 1999
  • $Li_{4/3}Mn_{5/3}O_4$ having a defect structure was prepared by sol-gel process using lithium acetate and manganese acetate as starting materials, and their electrode characteristics in the lithium secondary battery was investigated. The reaction mole ratio was determined as $AA/Mn(OAc)_2$ of 0.2 and $NH_4OH/Mn(OAc)_2$ to $H_2O/Mn(OAc)_2$ of 0.4. The product was obtained through heat treatment at $350^{\circ}C$ for 12hrs after 1'st heat treatment at $150^{\circ}C$ of xerogel under oxygen atmosphere. When the charge and discharge cycles were performed between 2.0 V and 3.2 V, $Li/Li_{4/3}Mn_{5/3}O_4$ cell showed the dicharge capacity of 84.23 mAh/g and the good cycleability was obtained in the plateau region.

  • PDF

Luminescence Characteristics and Crystal Structure of CaWO4-Li2WO4-Eu2O3 Phosphors (CaWO4-Li2WO4-Eu2O3계 형광체의 PL 특성과 결정구조)

  • Kim, Jeong-Seog;Choi, Jin-Ho;Jeong, Bong-Man;Kang, Hyun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.10-15
    • /
    • 2006
  • Photoluminescence (PL) and crystal structures of the $(l-x)CaWO_4-xLi_2WO_4$ binary system added with $Eu_2O_3$ activator have been characterized. The $CaWO_4\;and\;Li_2WO_4$ have the scheelite and phenakite structures respectively. The $CaWO_4-Li_2WO_4-Eu_2O_3$ phosphors show the red luminescence of 613 nm peak wavelength. The wavelength range of excitation spectral band is $380\~470$ nm with the peak wavelength of 397 nm. The $0.88(0.5CaWO_4-0.5Li_2WO_4)-0.12Eu_2O_3$ showed the most superior luminescence characteristics. The effect of co-doping elements such as $Al_2O_3$ and rare-earth oxides on PL has been characterized. The co-doping elements deteriorated the luminescence intensity except the $Al_2O_3$ and $Gd_2O_3$. The PL characteristics of $CaWO_4-Li_2WO_4-Eu_2O_3$ phosphors have been compared to those of the alkali europium double molybdates (tungstates) of scheelite-related structure such as $LiEu(MoO_4)_2$ and $CsEu(MoO_4)_2$. The crystal structures of $(l-y)[(l-x)CaWO_4-xLi_2WO_4]-yEu_2O_3$ phosphors have been characterized using XRD data and rietveld refinement.

The effect of $FePO_4$ coating on electrochemical characteristics of $LiMn_2O_4$ ($FePO_4$ 코팅이 $LiMn_2O_4$의 전기화학적 특성에 미치는 영향)

  • Lee, Jae-Won;Kim, Ji-Hyun;Park, Sun-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.303-303
    • /
    • 2008
  • $LiMn_2O_4$는 출력특성이 좋고 가격이 저렴하지만 전해액 중에서 $Mn^{2+}$이 용출되어 나오는 것과 반복적인 충방전시 구조가 파괴되는 단점이 있어 이것을 보완하고자 $FePO_4\cdot2H_2O$$LiMn_2O_4$의 표면에 코팅하였다, $LiMn_2O_4$를 모재로, $FePO_4\cdot2H_2O$를 코팅재로 사용하여 $FePO_4\cdot2H_2O$의 코팅량 변화와, 열처리 온도변화에 따른 물성 변화를살펴보았다, LiOH 와 $MnO_2$의 혼합물을 $1000^{\circ}C$ 에서 소성하여 $LiMn_2O_4$를 합성하고, Fe$(NO_3)_3$ 수용액과 $NH_4H_2PO_4$ 수용액을 혼합하여 $FePO_4\cdot2H_2O$를 제조하였다, $LiMn_2O_4$$FePO_4\cdot2H_2O$를 1wt%, 2wt%, 3wt% 비율로 ball milling 을 통해 코팅한 후, 온도를 변화시키면서 열처리 하였다. 코팅한 물질을 XRD를 통해 구조를 분석하고 SEM을 이용하여 형상을 관찰하였다. 또한 고온에서의 $Mn^{2+}$의 용출량을 ICP로 측정하고 half-cell을 만들어 충방전 test를 통해 충방전 특성을 조사하였다. 아울러, 코팅량과 열처리 온도 등 합성변수들이 소재특성 및 전기화학적 특성에 미치는 영향을 조사하였다.

  • PDF

Improved Rate Capability of Li/Li3V2(PO4)3 Cell for Advanced Lithium Secondary Battery

  • Lim, Hyun-He;Cho, A-Ra;Sivakumar, Nagarajan;Kim, Woo-Seong;Yoon, Won-Sub;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1491-1494
    • /
    • 2011
  • Lithium vanadium phosphate, $Li_3V_2(PO_4)_3$ was prepared by a simple solid state route. It was found that making a fine powder of $Li_3V_2(PO_4)_3$ by the mechanical milling is very effective for increasing the insertion/extraction of lithium from $Li_3V_2(PO_4)_3$ structure. In charge/discharge test, the ball-milled $Li_3V_2(PO_4)_3$ sample exhibited a higher initial discharge capacity of 174 mAh/g in the voltage range of 3.0-4.8 V, compared with pure $Li_3V_2(PO_4)_3$ sample (152 mAh/g). Furthermore, the ball-milled $Li_3V_2(PO_4)_3$ presented not only higher cycle retention rate after 50 cycles, but also better rate capability compared with pure sample in the whole region (0.1-7 C).

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun;Shin, Eun Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.851-855
    • /
    • 2013
  • This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.

Effect of $Li_4Ti_5O_{12}$ coating layer on capacity retention of $LiMn_2O_4$ as cathode materials of lithium ion secondary batteries for HEV application (HEV용 리튬 이차전지 양극물질 $LiMn_2O_4$$Li_4Ti_5O_{12}$ 코팅에 따른 영향)

  • Wai, Yin-Loo;Choi, Byung-Hyun;Jee, Mi-Jung;Lee, Dae-Jin;Shin, Jae-Su;Song, Kwang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.125-128
    • /
    • 2007
  • In these recent years, low cost and stable battery electrode materials have been studied for HV/HEV application. Spinel cathode material $LiMn_2O_4$ is widely studied as a promising cathode material of lithium ion secondary batteries because of it is low cost, easily to be prepared and capable to be operated in high voltage range. In this study, $LiMn_2O_4$ was undergoing surface modification with spinel lithium titanium oxide by sol-gel method in order to enhance its capacity retention. Properties of both unmodified and surface-modified $LiMn_2O_4$ were characterized by XRD, SEM, particle size analyzer while their cycling performance was tested with charge and discharge tester.

  • PDF