• Title/Summary/Keyword: LHS

Search Result 69, Processing Time 0.028 seconds

Validity and Reliability of the Korean Version of the London Handicap Scale (한국판 London Handicap Scale의 타당도와 신뢰도)

  • Choi, Yoo-Im;Kim, Won-Ho;Park, Eun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5102-5109
    • /
    • 2011
  • The purpose of the this study was to identify validity and reliability of the Korean version of the London Handicap Scale (K-LHS) measuring participation restriction for stroke survivors within outpatient rehabilitation setting. 54 stroke patients participated. The reliability was good with a Cronbach's ${\alpha}$ and intraclass correlation coefficient of .791 and .983, respectively. The results of exploratory factor analysis was that the K-LHS was constructed two factors and explanation power was 72.32%. There are significant correlation between K-MBI and subitems of K-LHS (r=-.454 ~ -.819)(p<.01), except economic item. Because the K-LHS seems to be a valid and reliable, thus, it is considered to be appropriate as a tool to measure participation restriction of stroke patients in clinical practice.

Weighted Latin Hypercube Sampling to Estimate Clearance-to-stop for Probabilistic Design of Seismically Isolated Structures in Nuclear Power Plants

  • Han, Minsoo;Hong, Kee-Jeung;Cho, Sung-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.63-75
    • /
    • 2018
  • This paper proposes extension of Latin Hypercube Sampling (LHS) to avoid the necessity of using intervals with the same probability area where intervals with different probability areas are used. This method is called Weighted Latin Hypercube Sampling (WLHS). This paper describes equations and detail procedure necessary to apply weight function to WLHS. WLHS is verified through numerical examples by comparing the estimated distribution parameters with those from other methods such as Random Sampling and Latin Hypercube Sampling. WLHS provides more flexible way on selecting samples than LHS. Accuracy of WLHS estimation on distribution parameters is depending on the selection of weight function. The proposed WLHS is applied to seismically isolated structures in nuclear power plants. In this application, clearance-to-stops (CSs) calculated using LHS proposed by Huang et al. [1] and WLHS proposed in this paper, respectively, are compared to investigate the effect of choosing different sampling techniques.

An Assessment on the Containment Integrity of Korean Standard Nuclear Power Plants Against Direct Containment Heating Loads

  • Seo, Kyung-Woo;Kim, Moo-Hwan;Lee, Byung-Chul;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.468-482
    • /
    • 2001
  • As a process of Direct Containment Heating (DCH) issue resolution for Korean Standard Nuclear Power Plants (KSNPs), a containment load/strength assessment with two different approaches, the probabilistic and the deterministic, was performed with all plant-specific and phenomena-specific data. In case of the probabilistic approach, the framework developed to support the Zion DCH study, Two-Cell Equilibrium (TCE) coupled with Latin Hypercubic Sampling (LHS), provided a very efficient tool to resolve DCH issue. In case of the deterministic approach, the evaluation methodology using the sophisticated mechanistic computer code, CONTAIN 2.0 was developed, based on findings from DCH-related experiments or analyses. For three bounding scenarios designated as Scenarios V, Va, and VI, the calculation results of TCE/LHS and CONTAIN 2.0 with the conservatism or typical estimation for uncertain parameters, showed that the containment failure resulted from DCH loads was not likely to occur. To verify that these two approaches might be conservative , the containment loads resulting from typical high-pressure accident scenarios (SBO and SBLOCA) for KSNPs were also predicted. The CONTAIN 2.0 calculations with boundary and initial conditions from the MAAP4 predictions, including the sensitivity calculations for DCH phenomenological parameters, have confirmed that the predicted containment pressure and temperature were much below those from these two approaches, and, therefore, DCH issue for KSNPS might be not a problem.

  • PDF

A Combined Procedure of RSM and LHS for Uncertainty Analyses of CsI Release Fraction Under a Hypothetical Severe Accident Sequence of Station Blackout at Younggwang Nuclear Power Plant Using MAAP3.0B Code

  • Han, Seok-Jung;Tak, Nam-Il;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.507-521
    • /
    • 1996
  • Quantification of uncertainties in the source term estimations by a large computer code, such as MELCOR and MAAP, is an essential process of the current Probabilistic safety assessment. The main objective of the present study is to investigate the applicability of a combined procedure of the response surface method (RSM) based on input determined from a statistical design and the Latin hypercube sampling (LHS) technique for the uncertainty analysis of CsI release fractions under a Hypothetical severe accident sequence of a station blackout at Younggwang nuclear power plant using MAAP3. OB code as a benchmark problem. On the basis of the results obtained in the present work, the RSM is recommended to be used as a principal tool for an overall uncertainty analysis in source term quantifications, while using the LHS in the calculations of standardized regression coefficients (SRC) and standardized rank regression coefficient (SRRC) to determine the subset of the most important input parameters in the final screening step and to check the cumulative distribution functions obtained by RSM. Verification of the response surface model for its sufficient accuracy is a prerequisite for the reliability of the final results that can be obtained by the combined procedure proposed in the present work.

  • PDF

Factors Associated with a Prolonged Length of Hospital Stay in Patients with Diabetic Foot: A Single-Center Retrospective Study

  • Choi, Sang Kyu;Kim, Cheol Keun;Jo, Dong In;Lee, Myung Chul;Kim, Jee Nam;Choi, Hyun Gon;Shin, Dong Hyeok;Kim, Soon Heum
    • Archives of Plastic Surgery
    • /
    • v.44 no.6
    • /
    • pp.539-544
    • /
    • 2017
  • Background We conducted this study to identify factors that may prolong the length of the hospital stay (LHS) in patients with diabetic foot (DF) in a single-institution setting. Methods In this single-center retrospective study, we evaluated a total of 164 patients with DF, and conducted an intergroup comparison of their baseline demographic and clinical characteristics, including sex, age, duration of diabetes, smoking status, body mass index, underlying comorbidities (e.g., hypertension or diabetic nephropathy), wound characteristics, type of surgery, the total medical cost, white blood cell (WBC) count, C-reactive protein (CRP) levels, erythrocyte sedimentation rate, and albumin, protein, glycated hemoglobin, and 7-day mean blood glucose (BG) levels. Results Pearson correlation analysis showed that an LHS of >5 weeks had a significant positive correlation with the severity of the wound (r=0.647), WBC count (r=0.571), CRP levels (r=0.390), DN (r=0.020), and 7-day mean BG levels (r=0.120) (P<0.05). In multiple regression analysis, an LHS of >5 weeks had a significant positive correlation with the severity of the wound (odds ratio [OR]=3.297; 95% confidence interval [CI], 1.324-10.483; P=0.020), WBC count (OR=1.423; 95% CI, 0.046.0-356; P=0.000), CRP levels (OR=1.079; 95% CI, 1.015-1.147; P=0.014), albumin levels (OR=0.263; 95% CI, 0.113.3-673; P=0.007), and 7-day mean BG levels (OR=1.018; 95% CI, 1.001-1.035; P=0.020). Conclusions Surgeons should consider the factors associated with a prolonged LHS in the early management of patients with DF. Moreover, this should also be accompanied by a multidisciplinary approach to reducing the LHS.

An Experimental Study on the Thermal Resistance Characteristics of Layered Heat Sink (적층형 Heat Sink의 열저항 특성에 관한 실험적 연구)

  • 김종하;윤재호;권오경;이창식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.271-287
    • /
    • 2001
  • This paper has been made to investigate the thermal performance characteristics for the several types of layered aluminum heat sinks with offset-strip fin. Heat sinks with different fin height, fin length, number of fin layer and slanted fin are prepared and tested for natural convection as well as forced convection. The experimental results for layered heat sink(LHS) are compared to those for advanced pin fin heat sink (PHS) so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for LHS are almost comparable to those of PHS under natural convection, and become 1.2∼1.5 times as high as those of PHS under forced convection situation. This study shows that fin height and number of fin layer re important parameters, which have a serious influence on thermal performance for layered heat sinks.

  • PDF

A B-spline based Branch & Bound Algorithm for Global Optimization (전역 최적화를 위한 B-스플라인 기반의 Branch & Bound알고리즘)

  • Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2010
  • This paper introduces a B-spline based branch & bound algorithm for global optimization. The branch & bound is a well-known algorithm paradigm for global optimization, of which key components are the subdivision scheme and the bound calculation scheme. For this, we consider the B-spline hypervolume to approximate an objective function defined in a design space. This model enables us to subdivide the design space, and to compute the upper & lower bound of each subspace where the bound calculation is based on the LHS sampling points. We also describe a search tree to represent the searching process for optimal solution, and explain iteration steps and some conditions necessary to carry out the algorithm. Finally, the performance of the proposed algorithm is examined on some test problems which would cover most difficulties faced in global optimization area. It shows that the proposed algorithm is complete algorithm not using heuristics, provides an approximate global solution within prescribed tolerances, and has the good possibility for large scale NP-hard optimization.

Suggestions for Enhancing Sampling-Based Approach of Seismic Probabilistic Risk Assessment (샘플링기반 지진 확률론적 리스크평가 접근법 개선을 위한 제언)

  • Kwag, Shinyoung;Eem, Seunghyun;Choi, Eujeong;Ha, Jeong Gon;Hahm, Daegi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.77-84
    • /
    • 2021
  • A sampling-based approach was devised as a nuclear seismic probabilistic risk assessment (SPRA) method to account for the partially correlated relationships between components. However, since this method is based on sampling, there is a limitation that a large number of samples must be extracted to estimate the results accurately. Thus, in this study, we suggest an effective approach to improve the existing sampling method. The main features of this approach are as follows. In place of the existing Monte Carlo sampling (MCS) approach, the Latin hypercube sampling (LHS) method that enables effective sampling in multiple dimensions is introduced to the SPRA method. In addition, the degree of segmentation of the seismic intensity is determined with respect to the final seismic risk result. By applying the suggested approach to an actual nuclear power plant as an example, the accuracy of the results were observed to be almost similar to those of the existing method, but the efficiency was increased by a factor of two in terms of the total number of samples extracted. In addition, it was confirmed that the LHS-based method improves the accuracy of the solution in a small sampling region.

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Latin Hypercube Sampling Based Probabilistic Small Signal Stability Analysis Considering Load Correlation

  • Zuo, Jian;Li, Yinhong;Cai, Defu;Shi, Dongyuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1832-1842
    • /
    • 2014
  • A novel probabilistic small signal stability analysis (PSSSA) method considering load correlation is proposed in this paper. The superiority Latin hypercube sampling (LHS) technique combined with Monte Carlo simulation (MCS) is utilized to investigate the probabilistic small signal stability of power system in presence of load correlation. LHS helps to reduce the sampling size, meanwhile guarantees the accuracy and robustness of the solutions. The correlation coefficient matrix is adopted to represent the correlations between loads. Simulation results of the two-area, four-machine system prove that the proposed method is an efficient and robust sampling method. Simulation results of the 16-machine, 68-bus test system indicate that load correlation has a significant impact on the probabilistic analysis result of the critical oscillation mode under a certain degree of load uncertainty.