• Title/Summary/Keyword: LFM

Search Result 92, Processing Time 0.023 seconds

A Study on the Performance Improvement in Sidelobe Suppression for Pulse Compression of LFM Signal (LFM 신호의 펄스압축에 대한 부엽억제 성능향상 기법연구)

  • Shin, Jeong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.95-100
    • /
    • 2006
  • The pulse compression technique using Linear FM signal is commonly used for improving the performance of both the detection range and range resolution in radar system. In general, the compressed LFM waveform has relatively large sidelobe level which may prevent a target from being detected when strong jammer or clutter signal is near the target signal. In this paper, we propose a new weighting method which uses the square-root weight to suppress the sidelobe level. Typical applications are missile seekers and tracking radar systems where target tracking range is available prior to the signal processing. By computer simulation, we show that the performance of the proposed method is better than that of the conventional weighting methods in terms of sidelobe suppression.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

Multiple vertical depression-based HMS active target detection using GSFM pulse (GSFM 펄스를 이용한 다중 수직지향각 기반 선체고정소나 능동 표적 탐지)

  • Hong, Jungpyo;Cho, Chomgun;Kim, Geunhwan;Lee, Kyunkyung;Yoon, Kyungsik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.237-245
    • /
    • 2020
  • In decades, active sonar, which transmits signals and detects incident signals reflected by underwater targets, has been significantly studied since passive sonar in Anti-Submarine Warfare (ASW) detection performance becomes lowered, as underwater threats become their radiated noise reduced. In general, active sonar using Hull-Mounted Sonar (HMS) adjusts vertical tilt (depression) and sequentially transmits multiple Linear Frequency Modulation (LFM) subpulses which have non-overlapped bands, i. e. 1 kHz ~ 2 kHz, 2 kHz ~ 3 kHz, in order to reduce shadow zones. Recently, however, Generalized SFM (GSFM), which is generalized form of SFM, is proposed, and it is confirmed that subpulses of GSFM have orthogonality among each other depending on setting of GSFM parameters. Hence, in this paper, we applied GSFM to active target detection using HMS to improve the performance by the signal processing gain obtained from enlarged bandwidths of GSFM subpulses compared to those of LFM subpulses. Through simulation, we verified that when the number of subpulses is three, the matched filter gain of GSFM is approximately 5 dB higher than that of LFM.

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Analysis of SAR Processing Performances with FJB Waveforms (FJB 파형을 이용한 SAR 영상 생성 기법 분석)

  • Kim, Eun-Hee;Roh, Ji-Eun;Park, Joon-Yong;Kim, Soo-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.195-207
    • /
    • 2017
  • Recently, the SAR-GMTI mode is becoming increasingly essential in airborne radar systems. While SAR requires wideband waveforms for high resolution imaging, GMTI requires narrowband waveforms for doppler processing, which makes general LFM waveforms difficult to use for SAR-GMTI. This paper analyses the FJB(Frequency Jump Burst) waveform, which is studied for the SAR-GMTI waveform, and presents the method for the pulse compression and SAR image formation using FJB waveforms. Simulation results show that there is little difference in performances between the FJB waveform and the LFM waveform.

A Study on Multi-Site Radar Operations Based on LFM Signal (LFM 신호에 기반한 다중국소 레이더 운영에 관한 연구)

  • Suh, Kyoung-Whoan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • As one of solutions to obtain efficient use of limited spectrum resource, we suggest a methodology for the co-channel multi-site radar operations with a shifted linear frequency modulation (SLFM) based on GPS clock. The proposed algorithm is that we find a candidate set of SLFM signals with the minimum acceptable level of the correlation from the cross-correlation characteristics among selected SLFM signals. To verify the proposed methodology, numerical analysis has been accomplished for several radars operating in the same channel with a sawtooth or triangle LFM signal. The computational results of detected distances as well as range profiles are also examined for interference, noise, and algorithm limitation including the error of clock synchronization.

Application of LFM Reverberation Suppression Using Difference of Singular Values in the Underwater Obstacle Detection (수중 장애물 탐지에서의 특이 값 차이를 이용한 LFM 잔향 감소 기법 적용 연구)

  • Lee, Hyung-Soo;Kwon, Bum-Soo;Cho, Chom-Gun;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.755-760
    • /
    • 2009
  • In this paper, we apply a reverberation suppression method using difference of singular values to improve the short-distance underwater obstacle detection probability in reverberation environment induced by a linear frequency modulation signal. The reverberation suppression method using difference of singular values suppresses LFM reverberation based on subtracting the singular values for a reference beam, assumed to contain only the reverberation, from those for the current beam of interest, assumed to contain the reverberation and target echo. For the validation, the reverberation suppression method using difference of singular values is applied to real oceanic data, which are acquired using the cross type array.

ISAR Imaging Using Rear View Radars of an Automobile (후방 감시 차량용 레이다를 이용한 ISAR 영상 형성)

  • Kang, Byung-Soo;Lee, Hyun-Seok;Lee, Seung-Jae;Kang, Min-Suk;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.245-250
    • /
    • 2014
  • This paper introduces the inverse synthetic aperture radar(ISAR) imaging technique for rear view target of an automobile, which uses both linear frequency modulation-frequency shift keying(LFM-FSK) waveform and monopulse tracking. LFM-FSK waveform consists of two sequential stepped frequency waveforms with some frequency offset, and thus, can be used to generate ISAR images of rear view target of an automobile. However, ISAR images can often be blurred due to non-uniform change rate of relative aspect angle between radar and target. In order to address this problem, one-dimensional(1-D) Lagrange interpolation technique in conjunction with angle information obtained from the monopulse tracking is applied to generate uniform data across the radar's aspect angle. Simulation results show that the proposed method can provide focused ISAR images.

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

Simulation and Experiment of Distorted LFM Signals in Shallow Water Environment

  • Na, Young-Nam;Jurng, Mun-Sub;Shim, Tae-Bo;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.16-25
    • /
    • 1998
  • This paper attempts to examine the characteristics of underwater acoustic signals distorted in shallow water environments. Time signals are simulated using an acoustic model that employs the Fourier synthesis scheme. An acoustic experiment was conducted in the shallow sea near Pohang, Korea, where water depth is about 60m. The environment in the simulation is set up so that it approximates the experimental condition, which can be regarded as range-independent. The signal is LFM(linar frequency modulated) type centered on one of the four frequencies 200, 400, 600 and 800Hz, each being swept up or down with the bandwidth of 100Hz. To analyze the signal characteristics, the study introduces a spectrum estimation scheme, pseudo Wigner-Ville distribution (PWVD). The simulated and measured signals suffer great interference by the interaction of neighboring rays. Although there are constructive or destructive interference, the signals keep LFM characteristics well. This is thought that only a few dominant rays of small loss contribute to the receive signals in a shallow water environment.

  • PDF