• Title/Summary/Keyword: LFER

Search Result 14, Processing Time 0.023 seconds

Development of new agrochemicals by qnantitative structure-activity relationship (QSAR) methodology. II. The linear free energy relationship (LFER) and descriptors (정량적인 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발 II. 자유에너지 직선관계(LFER)와 설명인자들)

  • Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.231-243
    • /
    • 2002
  • Starting with linear free energy relationships (LFER), drug design to mimic of the activated complexes at transition state, and hydrolysis mechanisms to control the potency and residual properties of pesticides were introduced and summarized for the necessity. In order to understand the searching or development of new agrochemicals by two dimensional quantitative structure-activity relationship (2D QSAR) methodology, a series of the various descriptors, steric constants, electronic constants including quantum pharmacological parameters and hydrophobic constants were classified and discussed for results of the several studied cases. In addition, the processes of development of new agrochemicals by QSAR techniques were introduced simply.

Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodologies. I. The basic concepts and types of QSAR methodologies (정량적인 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발 I. 기본 개념과 QSAR 기법의 유형)

  • Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.3
    • /
    • pp.166-174
    • /
    • 2002
  • The fundamental concepts on the basis of linear free energy relationship (LFER), history of development, prediction of pharmacological effects, advantages and disadvantages, etc. according to the 2D and 3D QSAR methodologies were summarized in utilizing the quantitative structure-activity relation ship (QSAR) techniques for searching and development of new agrochemicals. Objectives, role of QSAR techniques in development process of pesticides and limitations in QSARs were discussed and introduced.

Why Does m-Methyl Substituted Pesticides Show Higher Insecticidal Activity? On the Phenyl N-methylcarbamate and m-xylyl-N-methylcarbamate Derivatives (왜 m-methyl 치환 살충제들은 강한 살충작용을 나타낼까? -Phenyl N-methylcarbamate와 m-xylyl-N-methylcarbamate 유도체들에 관하여-)

  • Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.170-177
    • /
    • 1989
  • In order to seek the molecular basis of higher insecticidal activity of the carbamates with two methyl groups, m-xylyl-N-methylcarbamate(MXNMC) than the corresponding unsubstituted phenyl N-methylcarbamate(PNMC), these two derivatives have been studied by molecular orbital(MO) theoretically using extended $H\ddot{u}ckel$ theory(EHT), and analysis of regression and linear free energy relationship(LFER). The most stable stereo structure(Z, Z) shows that the phenyl group occupies vertical(${\theta}=90^{\circ}$) position on the plane of the N-methylcarbamyl group. Regression analysis shows that especially good correlation exists between the $pI_{50}$ values and the calculated MO quantities when the hydrogen atomic charge of metaposition and of m-methyl groups, and LUMO energy are taken as variables. The LFER analysis on the carbamylation indicates that field(F) effect(60%) is slightly larger than resonance(R) effect(40%) in PNMC(E>R), whereas, in case of MXNMC, R effect(98.6%) is much larger than F effect(1.4%)($R{\gg}F$). From the basis on the findings, the enhancement of insecticidal activity of MXNMC may be the result of hyperconjugation by m-methyl groups.

  • PDF

Linear Free Energy Relationship on the Phosphorylation of Acetylcholinesterase by Insecticidal O,O-Diethylphenylphosphate Derivatives (살충성(殺蟲性) O,O-Diethylphenylphosphate유도체(誘導體)들에 의(依)한 Acetylcholinesterase의 Phosphorylation에 미치는 자유(自由)에너지 관계(關係))

  • Sung, Nack-Do
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.176-181
    • /
    • 1984
  • Linear free energy relation ship(LFER) on the insecticidal activity of O,O-diethylphenylphosphate (A) and 3,5-dimethylphenyl-O,O-diethylphosphate (B) derivatives were studied by EHT MO calculation method and regression analysis method. LFER between varying substituent constants and $pI_{50}$ constants of phosphates, (A) & (B) were calculated with applying Hammett, Okamoto-Brown, Taft and Swain-Lupton's DSP equations;percent resonance effect(R) and field effect(F) of (A) were %R=33.5 & %F=66.5 and also that of (B) were %R=2 & %F=98, respectively. On the basis of above findings, the insecticidal activities were similar for both (A) and (B), but (B) have larger field and inductive contribution than (A), due to the 3,5-dimethyl group of (B).

  • PDF

Linear Free Energy Relationship on the Chemical Shift of Imidoyl Proton in N-benzylideneaniline Derivatives by PMR Spectrometry (核磁氣 共鳴分光法에 義한 N-Benzylideneaniline 誘導體중 Imidoyl Proton 의 Chemical Shift 에 미치는 自由에너지 關係)

  • Nack Do Sung;Cheon Kyu Park;Moon kyu Park;Ki Sung Kwon;Kim, Tae Rin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.277-282
    • /
    • 1985
  • The effects of linear free energy relationship (LFER) on the imidoyl proton (H${\alpha}$)-substituent chemical shift (SCS) in case of varying para-substituted C-phenyl group in N-benzylideneaniline derivatives were studied. The H${\alpha}$-SCS values and LFER parameters such as ${\sigma}$,${\sigma}^+$, ${\sigma}_I$,${\sigma}_R, F and R were applied to the Hammett, Okamoto-Brown, and Taft, Swain-Lupton's dual substituents parameter (DSP) equations. The results were: (1) the blending coefficient values, ${\lambda}$ = 2.8∼3.2, it's means that the resonance effect (R) was larger than inductive effect (I) and field effect (F), and (2) the values of percent resonance and percent field effects were %R = 66.6 and %F = 33.4, respectively, yielding the ratio of resonance effect (R) to field effect (F) of 2 : 1.

  • PDF

Solvent Dependence and Component of Linear Free Energy Relationship on the Chemical Shift of Methylene Proton in 1-(phenoxymethlyl)benzotriazole Derivatives (1-(phenoxymethyl)benzotriazole 유도체 중 methylene 양성자의 chemical shift 에 관한 자유에너지 관계의 조성과 용매 의존성)

  • Nack Do Sung
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.538-544
    • /
    • 1989
  • The increase of B-type hydrogen bonding character between the hydrogen atom($H{\gamma}$) of methylene group in 1-(phenoxymethyl)benzotriazole (1) and 1-(thiophenoxymetyl)benzotriazole (2) derivatives, and solvents was caused by some factors such as;electron withdrawing strength (${\rho} > 0$) of X-substituent; local diamagnetic effect by Y atom (Y = O(1) > S(2)) with adjacent methylene group; and solvent polarity parameter ($E_T$ = Kcal/mol; acetone; 42.2 > chloroform; 39.0). From the basis on the findings, linear free energy relationship (LFER) components on the substituent chemical shift of methylene group ($CH_2-SCS$) in (1) exhibited a tendency that resonance(R)-effect was much larger than field(F) (or inductive(I))-effect in acetone and that the electrical effects were depend upon the solvent.

  • PDF

Prediction of Pathway and Toxicity on Dechlorination of PCDDs by Linear Free Energy Relationship (다이옥신의 환원적 탈염화 분해 경로와 독성 변화예측을 위한 LFER 모델)

  • Kim, Ji-Hun;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • Reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and its toxicity change were predicted by the linear free energy relationship (LFER) model to assess the zero-valent iron (ZVI) and anaerobic dechlorinating bacteria (ADB) as electron donors in PCDDs dechlorination. Reductive dechlorination of PCDDs involves 256 reactions linking 76 congeners with highly variable toxicities, so is challenging to assess the overall effect of this process on the environmental impact of PCDD contamination. The Gibbs free energies of PCDDs in aqueous solution were updated to density functional theory (DFT) calculation level from thermodynamic results of literatures. All of dechlorination kinetics of PCDDs was evaluated from the linear correlation between the experimental dechlorination kinetics of PCDDs and the calculated thermodynamics of PCDDs. As a result, it was predicted that over 100 years would be taken for the complete dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) to non-chlorinated compound (dibenzo-p-dioxin, DD), and the toxic equivalent quantity (TEQ) of PCDDs could increase to 10 times larger from initial TEQ with the dechlorination process. The results imply that the single reductive dechlorination using ZVI or ADB is not suitable for the treatment strategy of PCDDs contaminated soil, sediment and fly ash. This LFER approach is applicable for the prediction of dechlorination process for organohalogen compounds and for the assessment of electron donating system for treatment strategies.

Antifungal activity of N-[1-(benzotriazol-1-yl)aryl]arylamine derivatives and quntitative structure-activity relationships(QSAR) (N-[1-(benzotriazol-1-yl)aryl]arylamine 유도체의 항균성과 정량적 구조활성 관계(QSAR))

  • Sung, Nack-Do;Kim, Kyoung-Hoon;Choi, Woo-Young;Kim, Hong-Ki
    • Applied Biological Chemistry
    • /
    • v.35 no.1
    • /
    • pp.14-22
    • /
    • 1992
  • A series of new N-[1-(benzotriazol-1-yl)aryl]arylamine derivatives were synthesized and their antifungal activities $(pI_{50})$ in vitro against Pyricularia oryzae, Fusarium oxysporum f. sp. sesami, Valsa ceratosperma and Botrytis cinerea were dertermined by the agar medium dilution method. From the results of the quantitative structure-activity relationships $(QSAR_S)$ analysis, $hydrophobicity({\pi})$, $electronic({\Sigma\sigma})$ and molar $refractivity({\Sigma}M_R)$ parameter of X & Y-substituents on the phenyl group were also shown to be important factor in determining the variation in the antifungal activity. 4-Bromo group substituents (1d & 2b) were the most effective compounds and the $half-life(T_{1/2})$ on the hydrolysis of X(1) at netural pH was about 1.5 day. Molecular orbital(MO) functions of substrate compound, linear free energy relationships$(LFER_S)$ on the antifungal reactivity arid the results of molecular design were also discussed.

  • PDF

Correlation of the Rates of Solvolyses of 4-Methylthiophene-2-carbonyl Chloride Using the Extended Grunwald-Winstein Equation

  • Choi, Ho-June;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.499-504
    • /
    • 2012
  • The specific rates of sovolysis of 4-methylthiophene-2-carbonyl chloride (1) have been determined in 26 pure and binary solvents at $25.0^{\circ}C$. Product selectivities are reported for solvolyses of 1 in aqueous ethanol and methanol binary mixtures. Comparison of the specific rates of solvolyses of 1 with those for p-methoxybenzoyl chloride (2) in terms of linear free energy relationships (LFER) are helpful in mechanistic considerations, as is also treatment in terms of the extended Grunwald-Winstein equation. It is proposed that the solvolyses of 1 in binary aqueous solvent mixtures proceed through an SN1 and/or ionization (I) pathway rather than through an associative $S_N2$ and/or addition-elimination (A-E) pathway.

Sorption of Pd on illite, MX-80 bentonite and shale in Na-Ca-Cl solutions

  • Goguen, Jared;Walker, Andrew;Racette, Joshua;Riddoch, Justin;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.894-900
    • /
    • 2021
  • This paper examines sorption of Pd(II) onto illite, MX-80 bentonite, and Queenston shale in Na-Ca-Cl solutions of varying ionic strength (IS) from 0.01 to 6.0 mol/L (M) and pHc ranging from 3 to 9 under atmospheric conditions. A 2-site protolysis non-electrostatic surface complexation and cation exchange model was applied to the Pd sorption onto illite and MX-80 using PHREEQC, and the model results were compared to the experimental ones obtained in this work. Surface complexation and cation exchange constants were estimated for both illite and MX-80 through the optimization process to bring the predicted distribution coefficients from the model into alignment with the experimentally derived values. These optimized surface complexation constants were compared to existing linear free energy relationships (LFER).