• Title/Summary/Keyword: LEO (low earth orbit)

Search Result 163, Processing Time 0.031 seconds

Optical Noise Removal in the Focal Plane of the Spaceborne Camera

  • Park, Jun-Oh;Jang, Won-Kweon;Kim, Seong-Hui;Jang, Hong-Sul;Lee, Seung-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.278-282
    • /
    • 2011
  • We discuss two possible optical noise sources in an electro-optic camera loaded on a low earth orbit satellite. The first noise source was a reflection at the window for signal rays incident upon the window which is placed before the FPA plane. The second noise source came from a reflection at the surface of the FPA cell when the signal flux is not entirely absorbed. We investigate the noise generation processes for two optical noise sources, and a parametric solution is used to estimate the optical noise effects.

-Demand forecasts for a New Telecommunication Service : In Case of Low Earth Orbit Mobile Satellite Services- (신규 통신서비스 수요예측 : 저궤도 (Low Earth Orbit(LEO)) 이동위성통신 서비스 수요예측 사례를 중심으로)

  • 김선경;박명환;배문식;전덕빈;주영진;홍정완
    • Information and Communications Magazine
    • /
    • v.12 no.7
    • /
    • pp.88-95
    • /
    • 1995
  • 신상품이나 신규 통신서비스의 수요 예측은 사업의 경제성 분석과 초기 시설투자 계획을 수립함에 있어 필수적이다. 그러나, 과거 자료가 없는 경우에 적용할 수 있는 기존의 수요예측방법은 비계량적인 방법들로서 객관성이 떨어지므로 가능한 한 주관적인 요소나 임의성을 배제할 수 있는 방법이 필요하다. 이에 본 연구는 저궤도 이동위성통신 서비스의 수요예측 사례를 중심으로 계량적인 모형에서 추정이 불가능한 모수들을 비계량적인 방법을 통해 추정함으로써 계량적인 방법과 비계량적인 방법을 결합한 수요예측방법을 제안한다. 본 연구에서는 기존 통신서비스와의 비교유추를 통하여 확산계수를 도출하고 설문자료로부터 잠재시장규모를 추정함으로써 신규 통신서비스의 확산과정을 예측하고 가격에 대한 수요의 탄력도를 도출한다.

  • PDF

Space Radiation Shielding Calculation by Approximate Model for LEO Satellites

  • Shin Myung-Won;Kim Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Two approximate methods for a cosmic radiation shielding calculation in low earth orbits were developed and assessed. Those are a sectoring method and a chord-length distribution method. In order to simulate a change in cosmic radiation environments along the satellite mission trajectory, IGRF model and AP(E)-8 model were used. When the approximate methods were applied, the geometrical model of satellite structure was approximated as one-dimensional slabs, and a pre-calculated dose-depth conversion function was introduced to simplify the dose calculation process. Verification was performed with mission data of KITSAT-1 and the calculated results were also compared with detailed 3-dimensional calculation results using Monte Carlo calculation. Dose results from the approximate methods were conservatively higher than Monte Carlo results, but were lower than experimental data in total dose rate. Differences between calculation and experimental data seem to come from the AP-8 model, for which it is reported that fluxes of proton are underestimated. We confirmed that the developed approximate method can be applied to commercial satellite shielding calculations. It is also found that commercial products of semi-conductors can be damaged due to total ionizing dose under LEO radiation environment. An intensive shielding analysis should be taken into account when commercial devices are used.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

Performance Analysis of DPSK Optical Communication for LEO-to-Ground Relay Link Via a GEO Satellite

  • Lim, Hyung-Chul;Park, Jong Uk;Choi, Mansoo;Choi, Chul-Sung;Choi, Jae-Dong;Kim, Jongah
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • Satellite optical communication has gained significant attention owing to its many quality features (e.g., a larger bandwidth, license free spectrum, higher data rate, and better security) compared to satellite microwave communication. Various experiments have been performed during many space missions to demonstrate and characterize inter-satellite links, downlinks, and uplinks. Korea has also planned to establish an experimental communication system using a geostationary earth orbit (GEO) satellite and the Geochang station as an optical ground station for low Earth orbit (LEO)-to-ground optical relay links. In this study, the performance of inter-satellite communication links and downlinks was investigated for the new Korean experimental communication system in terms of link margin, bit error rate (BER), and channel capacity. In particular, the performance of the inter-satellite links was analyzed based on the receiving apertures and the transmitting power, while that of the downlink was analyzed in terms of atmospheric turbulence conditions and transmitting power. Finally, we discussed two system parameters of receiving aperture and transmitting power to meet the three criteria of link margin, BER, and channel capacity.

Re-entry Survivability and On-Ground Risk Analysis of Low Earth Orbit Satellite (저궤도 위성의 대기권 재진입 시 생존성 및 피해확률 분석)

  • Jeong, Soon-Woo;Min, Chan-Oh;Lee, Mi-Hyun;Lee, Dae-Woo;Cho, Kyeum-Rae;Bainum, Peter M.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.158-164
    • /
    • 2014
  • LEO(Low Earth Orbit) Satellite which is discarded should be reentered to atmosphere in 25 years by '25 years rule' of IADC(Inter-Agency Space Debris Coordination Committee) Guidelines. If the parts of satellite are survived from severe aerothermodynamic condition, it could damage to human and property. South Korea operates KOMPSAT-2 and STSAT series as LEO satellite. It is necessary to dispose of them by reentering atmosphere. Therefore this paper analyze the trajectory, survivability, casualty area and casualty probability of a virtual LEO satellite using ESA(European Space Agency)'s DRAMA(Debris Risk Assesment and Mitigation Analysis) tool. As a result, it is noted that casuality area is $15.2742m^2$ and casualty probability is 5.9614E-03 then will be survived 198.831kg.

Analysis about Threshold Measurement Test Result of LEO Satellite Receiver (저궤도 위성 Receiver의 Threshold측정 시험 결과에 대한 분석)

  • Jo, Seung-Won;Gwon, Jae-Uk;Choe, Jong-Yeon;Choe, Seok-Won
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • We should measure receiver tracking threshold and command threshold of the satellite in Integrate System Test (IST) in order to check the normal received power range of LEO(Low Earth Orbit) satellite S-band receiver. In this paper, the algorithm of threshold measurement is examined and the result measured in Integrated System Test is displayed. And than, the factor could have an effect on the result of threshold measurement except the capability of receiver itself was analyzed and compensated as many as distorted value according to that analysis.

  • PDF

Analysis of Orbit Injection Performance of KSLV-II by Weight Reduction (경량화에 의한 한국형발사체 궤도투입성능 향상 분석)

  • Kim, Hye-Sung;Yang, Seong-Min;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.141-151
    • /
    • 2018
  • A trajectory analysis program was developed to predict KSLV-II (Korea Space Launch Vehicle-II) performance with the reducing weight. The program estimates the LEO (Low Earth Orbit) / SSO (Sun-Synchronous Orbit) injection performance, which is determined as payload weight for the orbits, with decreasing the structural ratio or increasing rocket engine power. It is expected that the KSLV-II can transport up to 4.5 tons, 3 tons of space payloads at LEO, SSO with a reduced structural ratio by 60% of the original. It also shows that the KSLV-II can transport up to 3.65 tons at SSO by applying advanced engines of 90 tonf, 10 tonf class with the reduced structure.

Recent Activities in Space Environment Engineerings in Japan Aerospace Exploration Agency

  • Koshiishi, Hideki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.93.2-93.2
    • /
    • 2011
  • Japan Aerospace Exploration Agency (JAXA) has measured space environment and its effects on spacecraft and astronaut since 1987. At present, we have operated space environment monitors onboard one GEO spacecraft, one QZO spacecraft, and two LEO spacecrafts. The obtained space environment data has been gathered into the Space Environment and Effects System database (SEES, http://sees.tksc.jaxa.jp/). In this presentation, measurement result of space environment in low earth orbit obtained by the Daichi satellite from 2006 through 2011 is reported as well as recent activities in space environment engineerings in JAXA. The Technical Data Acquisition Equipment (TEDA) on board the Daichi satellite (Advanced Land Observing Satellite: ALOS) had been operated in low earth orbit at 700 km altitude with 98 degree inclination from February 2006 until April 2011. The TEDA consists of the Light Particle Telescope and the Heavy Ion Telescope. The operation period of the Daichi satellite was through the solar-activity minimum period. The space radiation environment around the Daichi satellite had been almost stable. However, large solar flares followed by CMEs sometimes disturbed the space radiation environment in the orbit of the Daichi satellite. In addition, high speed solar wind often flowed and modulated the electron flux in the horn region. On the other hand, a little variation was seen in the SAA region.

  • PDF

A Study on Modelling and Attitude Control Techniques of LEO Satellite (저궤도 위성체의 모델링 및 자세제어 기법에 관한 연구)

  • Lho, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.9-13
    • /
    • 2009
  • In the three axis control of Low Earth Orbit (LEO) satellite by using reaction wheel and gyro, a reaction wheel produces the control torque by the wheel speed or momentum, and a gyro carries out measuring of the attitude angle and the attitude angular velocity. In this paper, the dynamic modelling of LEO is consisted of the one from the rotational motion of the satellite with basic rigid body model and a flexible model, in addition to the reaction wheel model. A robust controller $(H_\infty)$ is designed to stabilize the rigid body and the flexible body of satellite, which can be perturbed due to disturbance, etc. The result obtained by $H_\infty$ controller is compared with that of the PI (Proportional and Integration) controller, which has been traditionally using for the stabilizing LEO satellite.