• 제목/요약/키워드: LEE operon

검색결과 114건 처리시간 0.03초

Vibrio fluvialis oligopeptide permease (oppA) 유전자 deletion에 의한 생리적 특성 (Characterization of Physiological Properties in Vibrio fluvialis by the Deletion of Oligopeptide Permease (oppA) Gene)

  • 안선희;이은미;김동균;홍경은;박은미;공인수
    • 생명과학회지
    • /
    • 제16권1호
    • /
    • pp.131-135
    • /
    • 2006
  • 미생물이 이용할 수 있는 nitrogen source는 di-, tri-, oli- go-peptide 또는 amino acid의 형태로 세포내로 uptake되어 대사과정에 사용되고 있다. 이와같은 peptide는 특이한 transport system에 의해서 이동되고 있는데 oligo peptide(Opp) transport system에는 binding protein, permease protein, energy 생성을 위한 ATP 분해에 관여하는 protein 이 관여하고 있으며 염색체 상에서 이들 단백질들은 operon 형태의 유전자로부터 발현되고 있다. 본 연구는 gram 음성 세균이며 수해양 서식 세균인 V, fluvialis로부터 얻어진 Opp operon 유전자 가운데 oligopeptide binding protein을 coding하고 있는 oppA 유전자가 deletion된 mutant를 사용하여 여러 환경변화에 따른 생육을 wild type과 비교한 연구 결과 이다. 생육을 위한 완전배지인 brain heart infusion (BHI) 배지와 최소배지인 M9 minimal 배지를 사용한 결과 OppA protein의 생성 결핍에 따라 초기 및 대수증식기 과정 중에는 mutant의 생육이 늦어지고 있으나 Opp system이 아닌 다른 peptide전달 경로로 추정되는 system을 이용하여 대수 증식기 후반에서는 wild type과 거의 같은 생육 형태를 보여 주고 있었다. pH의 변화에 따른 생육은 pH 7에서는 생육정도가 비슷하였으나 약알칼리 부근에서는 oppA mutant의 생육이 wild type에 비하여 낮아지고 있었다. 또한 5 mM $H_2O_2$를 사용하여 $OD_{600}=1.2$농도의 세포들에 대한 영향을 검토한 결과 두 균 모두 높은 생존율을 보여 주었으며 이는 대수증식기 세포들을 사용한 결과와는 매우 다른 형태를 보여 주고 있었다. 항생제 내성에 대한 연구에서는 mutant가 streptomycin과 tetracycline 에 대해서는 wild type과는 다르게 매우 낮은 농도에서도 생육이 되고 있지 않으나 polymyxin B에 대해서는 wild type과 같이 $10{\mu}g/ml$의 농도에서도 잘 자라고 있었다.

The Lux Genes and Riboflavin Genes in Bioluminescent System of Photobacterium leiognathi Are under Common Regulation

  • Sung, Nack-Do;Lee, Chan-Yong
    • Journal of Photoscience
    • /
    • 제11권1호
    • /
    • pp.41-45
    • /
    • 2004
  • The key riboflavin synthesis genes are located immediately downstream of luxG in the lux operon from Photobacterium leiognathi. It is of interest that a site capable of forming a rho-independent terminator does not appear to be present between luxG and ribE in our previous data. These results raise the question of whether the transcription of lux and rib genes is integrated or not. In order to answer the question, in vivo transcriptional assay and Southern blot were examined. These studies demonstrate that neither transcriptional terminator nor promoter site is present in the intergenic region between of lux and rib genes as well as that the riboflavin genes are single copy in a chromosome of Photobacterium leiognathi.

  • PDF

Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains

  • 박시재;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.735-738
    • /
    • 2001
  • Metabolically engineered Escherichia coli strains harboring a plasmid containing a novel artificial polyhydroxyalkanoate (PHA) operon consisting of the Aeromonas PHA biosynthesis related genes and Ralstonia eutropha reductase gene were developed for the production of poly(3-hydroxybutyrate-co-hydroxyhexanoate) [P(3HB-co-3HHx)] from dodecanoic acid. By applying stepwise reduction of dissolved oxygen concentration (DOC) during the fermentation, the final dry cell weight, PHA concentration, and PHA content of 79 g/L, 21.5 g/L, and 27.2 wt%, respectively, were obtained in 40.8 h, which resulted in the PHA productivity of 0.53 g/L/h. The 3HHx fraction slowly increased during the fed-batch culture to reach a final value of 10.8 mol%. The 3HHx fraction in the copolymer could be increased by three fold when the Aeromonas hydrophila orfl gene was co-expressed with the PHA biosynthesis genes.

  • PDF

Quorum Sensing of Rhodobacter sphaeroides Negatively Regulates Cellular Poly-$\beta$-Hydroxybutyrate Content Under Aerobic Growth Conditions

  • Lee, Jeong-K.;Kho, Dhong-Hyo;Jang, Ji-Hee;Kim, Hye-Sun;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.477-481
    • /
    • 2003
  • The community escape response of Rhodobacter sphaeroides is exerted through the action of CerR and CerI, which code for a LuxR-type regulatory protein and acylhomoserine lactone synthase, respectively. Deletion of chromosomal DNA including cerR and cerI (mutant RI) or insertional interruption of cert (mutant AP3) resulted in two-fold increase in the cellular poly-${\beta}$-hydroxybutyrate (PHB) content In comparison with the wild-type under aerobic growth conditions. The PHB synthase (PhbC) activities of the cer mutants were doubled, and the enzyme expression was regulated at the level of phbC transcription. Thus, CerR, possibly in response to autoinducer (AI), appears to modulate the PHB content of aerobically grown cells by downregulating phbC transcription.

Characterization of Protein Factor Regulating the Superoxide-Sensor SoxR in Escherichia coli

  • Koo, Mi-Sun;Rah, So-Yeon;Lee, Kang-Lok;Roe, Jung-Hye
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.64-64
    • /
    • 2001
  • Escherichia coli has developed soxRS regulon to defend against toxicity of superoxide radical. SoxR, superoxide sensor, is oxidized by superoxide-generating agents or nitric oxide and oxidized SoxR activates the transcription of soxS gene. In order to find out the trans-acting factors regulating SoxR activity in vivo, soxS::lacZ single copy operon fusion construct was prepared and random Tn10 insertional mutatons were performed.(omitted)

  • PDF

Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress-Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain

  • Park, Jihoon;Lee, SuRin;Lee, Min Ju;Park, Kyunghoon;Lee, Seungki;Kim, Jihyun F.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1420-1429
    • /
    • 2020
  • Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.

Expression of the Galactose Mutarotase Gene from Lactococcus lactis ssp. lactis ATCC7962 in Escherichia coli

  • Lee, Jong-Hoon;Choi, Jae-Yeon;Lee, Jung-Min;Kim, Jeong-Hwan;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.840-843
    • /
    • 2000
  • The structure of gal/lac operon of Lactococcus lactis ssp. lactis ATCC7962 was partially characterized and the gene (galM) encoding galactose mutarotase was cloned together with the order; galA-galM-galK-galT. The galM was found to be 1,027 bp in length and encoded the protein of 37,609 Da calculated molecular mass. The deduced amino acid sequence showed a homology with GalM proteins from several other microorganisms. Thus, the galM gene was expressed in Escherichia coli and the product was identified as a 38 kDa protein which corresponded to the size estimated from DNA sequence. mutarotase activity of the IPTG inducedrecombinant was 2.7 times increased against that of the host strain.

  • PDF

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

RNase P-dependent Cleavage of Polycistronic mRNAs within Their Downstream Coding Regions in Escherichia coli

  • Lee, Jung-Min;Kim, Yool;Hong, Soon-Kang;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1137-1140
    • /
    • 2008
  • M1 RNA, the catalytic subunit of Escherichia coli RNase P, is an essential ribozyme that processes the 5' leader sequence of tRNA precursors (ptRNAs). Using KS2003, an E. coli strain generating only low levels of M1 RNA, which showed growth defects, we examined whether M1 RNA is involved in polycistronic mRNA processing or degradation. Microarray analysis of total RNA from KS2003 revealed six polycistronic operon mRNAs (acpP-fabF, cysDNC, flgAMN, lepAB, phoPQ, and puuCBE) showing large differences in expression between the adjacent genes in the same mRNA transcript compared with the KS2001 wild type strain. Model substrates spanning an adjacent pair of genes for each polycistronic mRNA were tested for RNase P cleavage in vitro. Five model RNAs (cysNC, flgMN, lepAB, phoPQ, and puuBE) were cleaved by RNase P holoenzyme but not by M1 RNA alone. However, the cleavages occurred at non-ptRNA-like cleavage sites, with much less efficiency than the cleavage of ptRNA. Since cleavage products generated by RNase P from a polycistronic mRNA can have different in vivo stabilities, our results suggest that RNase P cleavage may lead to differential expression of each cistron.

Analysis of a Prodigiosin Biosynthetic Gene Cluster from the Marine Bacterium Hahella chejuensis KCTC 2396

  • Kim, Doc-Kyu;Park, Yon-Kyoung;Lee, Jong-Suk;F. Kim, Ji-Hyun;Jeong, Hae-Young;Kim, Beom-Seok;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권12호
    • /
    • pp.1912-1918
    • /
    • 2006
  • Marine bacterium Hahella chejuensis KCTC 2396 simultaneously produced red antibiotic prodigiosin and undecylprodiginine. A complete set of the prodigiosin biosynthetic gene cluster has been cloned, sequenced, and successfully expressed in a heterologous host. Sequence analysis of the gene cluster revealed 14 ORFs showing high similarity to pig and red genes from Serratia spp. and Streptomyces coelicolor A3(2), respectively, and the gene organization was almost: similar to that of pig genes. These genes were named hap for Hahella prodigiosin, and determined to be transcribed as a single operon, by RT-PCR experiment. Based on the hap gene mutagenesis experiments and comparative analysis with pig and red genes, we propose a prodigiosin-biosynthetic pathway in KCTC 2396.