• Title/Summary/Keyword: LED light-emitting device

Search Result 156, Processing Time 0.024 seconds

Real-Time Detection of Residual Free Chlorine and pH in Water Using a Microchannel Device

  • Kim, Sam-Hwan;Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.368-374
    • /
    • 2011
  • A microfluidic device for real-time monitoring of residual free chlorine and pH in water based on optical absorption is proposed. The device consists of a serpentine micromixer for mixing samples with a reagent, and a photodiode and light emitting diode(LED) for the detection of light absorbance at specific wavelengths, determined for specific reagent combinations. Spectral analyses of the samples mixed with N, N'-diethyl-p-phenylenediamine(DPD) reagent for chlorine determination and bromothymol blue(BTB) for pH measurement are performed, and the wavelengths providing the most useful linear changes in absorbance with chlorine concentration and pH are determined and used to select the combination of LED and photodiode wavelengths for each analyte. In tests using standard solutions, the device is shown to give highly reproducible results, demonstrating the feasibility of the device for the inexpensive and continuous monitoring of water quality parameters with very low reagent consumption.

On the route towards Si-based full color LED microdisplays for NTE applications

  • Smirnov, A.;Labunov, V.;Lazarouk, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.727-731
    • /
    • 2005
  • Design and manufacturing process of a full color LED microdislay fabricated by standard CMOS technology and containing an array of aluminum / nanostructured porous silicon reverse biased light emitting Schottky diodes will be discussed. Being of a solid state construction, this microdisplays are cost-effective, thin and light in weight due to very simple device architecture. Its benefits include also super high resolution, wide viewing angles, fast response time and wide operating temperature range. The advantages of full integration of an LED-array and driving circuitry onto a Si-chip will be also discussed.

  • PDF

Display power analysis and design guidelines to reduce power consumption

  • Issa, Joseph
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.167-177
    • /
    • 2012
  • Cold cathode fluorescent lamps (CCFLs) are used to provide lighting for liquid crystal displays (LCDs). This paper presents a set of guidelines for measurement characterization and design to reduce the power consumption of CCFL LCD backlight inverters and panel electronics. The proposed methods aim to reduce the backlight power consumption by fine-tuning a back-light inverter for a specific LCD, using several methods. First, the authors describe their power measurement methodology; and next, they identify different areas for tuning a backlight inverter for a given display. The experiment results showed that power savings can range from 50 to 200mW if the backlight inverter is properly tuned. This paper also proposes an optimized configuration for light-emitting device (LED) panels to reduce power loss by selecting a LED with a specific input voltage and number of cells to help minimize power loss.

Cell differentiation control device capable of simultaneous stimulation of multi-wavelength LED (다파장 LED의 동시 자극 인가가 가능한 세포 분화 유도기)

  • Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.221-227
    • /
    • 2021
  • Recently, interests in mask-type skin care devices using light-emitting diodes have been increasing and optical stimuli at certain wavelengths have been known to have various therapeutic effects, such as skin whitening, acne treatment, elasticity and wrinkle improvement by controlling the exposure to wavelengths of light and irradiation time. In particular, light sources of different wavelengths are applied in masks for the purpose of suppressing skin aging, inducing cell proliferation, and alleviating skin inflammation. In this paper, we developed a light-emitting diode control system that is actively used in skin regeneration masks using a microcontroller. Optical stimuli with different manners were applied to skin fibroblast cells in a single or complex wavelengths, and then confirmed how they are effective in the cell differentiation. In addition, we found a specific wavelength that has a positive effect on cell proliferation rates, and confirm the effectiveness of cell proliferation by image processing based quantitative analysis.

Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction (n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드)

  • Han, W.S.;Kim, Y.Y.;Kong, B.H.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

Solution-Processible Blue-Light-Emitting Polymers Based on Alkoxy-Substituted Poly(spirobifluorene)

  • Lee, Jeong-Ik;Chu, Hye-Yong;Oh, Ji-Young;Do, Lee-Mi;Lee, Hyo-Young;Zyung, Tae-Hyoung;Lee, Jae-Min;Shim, Hong-Ku
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.181-187
    • /
    • 2005
  • Alkoxy-substituted poly(spirobifluorene)s and their copolymers with a triphenylamine derivative have been synthesized by Ni(0)-mediated polymerization. The polymers were well soluble in common organic solvents. Pure blue-light emissions without the long wavelength emission of poly(fluorene)s have been observed in the fluorescence spectra of polymer thin films. The light emitting diodes with a device configuration of ITO/PEDT:PSS(30 nm)/polymer(60 nm)/LiF(1 nm)/Al(100 nm) have been fabricated. The electroluminescence spectra showed the blue emissions without the long wavelength emission as observed in the fluorescence spectra. The relatively poor electroluminescence quantum yield of the homopolymer (0.017% @ 20 $mA/cm^{2}$) with color coordinates of (0.16, 0.07) has been improved by the introduction of triphenylamine moiety, and the copolymer with derivative exhibited an electroluminescence quantum yield of 0.15 % at 20 $mA/cm^{2}$ with color coordinates of (0.16, 0.08). Moreover, the introduction of polar side chains to the spirobifluorene moiety enhanced the device performance and led to the quantum yields of 0.6 to 0.7 % at 20 $mA/cm^{2}$, although there was some expense of color purities.

  • PDF

A Study on the Computational Design of Static Mixer and Mixing Characteristics of Liquid Silicon Rubber using Fluidic Analysis for LED Encapsulation (LED Encapsulation을 위한 스태틱 믹서의 전산 설계 및 유동해석을 이용한 액상 실리콘의 혼합 특성에 대한 연구)

  • Cho, Yong-Kyu;Ha, Seok-Jae;Huxiao, Huxiao;Cho, Myeong-Woo;Choi, Jong Myeong;Hong, Seung-Min
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • A Light Emitting Diode(LED) is a semiconductor device which converts electricity into light. LEDs are widely used in a field of illumination, LCD(Liquid Crystal Display) backlight, mobile signals because they have several merits, such as low power consumption, long lifetime, high brightness, fast response, environment friendly. In general, LEDs production does die bonding and wire bonding on board, and do silicon and phosphor dispensing to protect LED chip and improve brightness. Then lens molding process is performed using mixed liquid silicon rubber(LSR) by resin and hardener. A mixture of resin and hardener affect the optical characteristics of the LED lens. In this paper, computational design of static mixer was performed for mixing of liquid silicon. To evaluate characteristic of mixing efficiency, finite element model of static mixer was generated, and fluidic analysis was performed according to length of mixing element. Finally, optimal condition of length of mixing element was applied to static mixer from result of fluidic analysis.

  • PDF

Optical Characterization of Light-Emitting Diodes Grown on the Cylinder Shape 300 nm Diameter Patterned Sapphire Substrate (300 nm Diameter Cylinder-Shape 나노패턴 기판을 이용한 LEDs의 광학적 특성)

  • Kim, Sang Mook;Kim, Yoon Seok
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.59-64
    • /
    • 2019
  • This study investigates the optical characteristics of InGaN multiple quantum wells(MQWs) light emitting diodes(LEDs) on planar sapphire substrates(PSSs), nano-sized PSS(NPSS) and micro-sized PSS(MPSS). We obtain the results as the patterning size of the sapphire substrates approach the nanometer scale: The light from the back side of the device increases and the total light extraction becomes larger than the MPSS- and planar-LEDs. The experiment is conducted by Monte Carlo ray-tracing, which is regarded as one of the most suitable ways to simulate light propagation in LEDs. The results show fine consistency between simulation and measurement of the samples with different sized patterned substrates. Notably, light from the back side becomes larger in the NPSS LEDs. We strongly propose that the increase in the light intensity of NPSS LEDs is due to an abnormal optical distribution, which indicates an increase of extraction probability through NPSS.

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

LED 칩 열화특성에 적합한 열화모델 기반의 수명예측 시스템 구현

  • Yu, Gi-Hun;Lee, Jae-Hun;Kim, Dal-Seok;Lee, Mu-Seok;Yun, Yang-Gi;Han, Ji-Hun;Jang, Jung-Sun
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.79-85
    • /
    • 2011
  • LED(Light Emitting Diode) is a powerful device used in applications as diverse as replacements for aviation lighting, automotive lighting as well as in traffic signals. This study is to propose a prediction system based on the degradation model of LED which is determined by combining scale and shape parameter. The degradation model is analysed goodness of fit test using calculated R-square, and is compared with previous models. A LED prediction system using degradation model is developed to automate estimations of degradation parameters and lifetimes.

  • PDF