• 제목/요약/키워드: LED lamp technology

검색결과 133건 처리시간 0.023초

형광램프대체용 LED FDL 개발 (Development of The LED FDL for Replacing Fluorescent Lamp)

  • 양병문;장우진;차재상
    • 조명전기설비학회논문지
    • /
    • 제29권1호
    • /
    • pp.9-14
    • /
    • 2015
  • Due to the declining LED price and environment-friendly energy policies, CO2 emission reduction and energy-saving, the LED lighting industry is accelerating rapidly. In particular, the needs for LED lamp, replacing the existing fluorescent lamp without exchange luminaire or driver circuits, are also rapidly increasing. Therefore, replacement for T8 fluorescent lamp, LED T8 lamp was developed and standardized. However, except LED T8 lamps, other lamps' regulations or standards were not enacted. Also, the stability of fluorescent lamp substitutable LED lamp is low due to the difference in electrical characteristics and mismatch between the existing fluorescent lamp ballast and LED lamp. Therefore, many are struggling while developing fluorescent lamp substitutable LED lamp. In this paper describes the properties of existing fluorescent lamp ballasts and the considerations while developing fluorescent lamp substitutable LED lamp : demonstrating its validity by experiments the developed fluorescent lamp substitutable LED lamp prototype.

육상용 LED 램프의 선박 적응력에 관한 연구 (A study on the accommodation of common LED to shipboard)

  • 정지현;박환철;김용주;한승재;서상도;김민석
    • 수산해양기술연구
    • /
    • 제46권4호
    • /
    • pp.503-508
    • /
    • 2010
  • Common LED (Light Emitting Diode) lamp has many advantages to compare with fluorescent lamp, long life and no pollution matter like the mercury. The LED lamp is a good light source especially for shipboard lighting because of its compact structure which prevents explosion and shock. Also, low maintenance cost is expected due to its longer life time in comparison with conventional lamps. The LED lamp, however, need some estimates that change of voltage and frequency, vibration, moisture on board to definite accommodation of the LED lamp to shipboard. The purpose of this study is to compare physical properties of a fluorescent lamp with one of the common LED lamp so as to analyze accommodation of common LED lamp on board. This study was carried out in two stages. First, temperature, humidity of illumination, voltage, electric current, frequency and electric power were measured by using experimental equipments. Second, a comparative analysis of consumption electric power, annual oil charge, annual CO2 emission and lamp life time, etc of the fluorescent lamp and common LED one was made. As a result of the study, the consumption electric power of fluorescent lamp was 50% higher than one of the common LED lamp. As a result of measuring life time, it was found that life time of common LED lamp was more about 3.5 fold than one of the fluorescent lamp. Considering these results, it's thought that common LED lamp is verified that energy saving is possible and using is possible as substitute for fluorescent lamp on board.

직관형 LED램프 컨버터에 회로구동방식을 적용한 LED 형광등 연구 (A Study on LED Fluorescent Lamp applying Circuit Driven Method to Tubular LED Lamp Converter)

  • 양병문;차재상
    • 한국위성정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.77-82
    • /
    • 2015
  • 본 논문에서는 LED 형광등에 활용이 가능한 컨버터 관한 연구를 수행하였다. 기존 고효율에너지 기자재로 지정된 형광램프용 고조도 반사갓이 LED 형광램프의 Heat-sink 구조상 활용할 수 없는 구조이기 때문에 LED 형광램프 컨버터의 에너지 효율이 뛰어난 회로 설계 및 보호회로 설계가 필요하다. 따라서 본 논문에서는 직관형 LED램프 컨버터에 회로구동방식을 적용한 LED 형광등 연구를 수행하였다. 또한, LED를 광원으로 한 'LED 램프'와 일반 상용 전원에 접속해 직류 전원을 공급할 수 있는 컨버터에 대하여 설계 및 제작을 하였다.

Motion recognition LED lamp technology using infrared ray sensor

  • Zouhaier, Muhamud
    • 한국인공지능학회지
    • /
    • 제4권1호
    • /
    • pp.1-3
    • /
    • 2016
  • These days, citizens are interested in the energy. IT technology needs to develop and to make use of energy effectively and to save energy. In this study, motion recognition LED lamp was used to have good energy efficiency and to be made of environment friendly material. The purpose of development of the lamp was to add motion recognition to LED lamp. In this study, infrared ray sensor's distance measurement was used to develop LED lamp. Most of the lamps were used under dark environment, so that infrared ray sensor was used to perceive movement under dark environment. And, LED lamp with good efficiency and less power consumption was used to increase efficiency. Citizens were interested in perception of the movement to distinguish from conventional type of the lamps.

Time-division Visible Light Communication Using LED Lamp Light

  • Lee, Seong-Ho
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.145-150
    • /
    • 2015
  • We introduce a new method of time-division visible light communication (VLC) using LED lamp light for the generation of synchronizing pulses. The LED lamp, driven by an AC 220-V power line, radiates light that has a 120-Hz frequency component. The pulse generator in each VLC system receives the LED lamp light and generates the synchronizing pulses that are required for time-division transmission of multiple VLC channels. The pulse period is subdivided into several time slots for VLC channels. In experiments, 120-Hz synchronizing pulses were generated using LED lamp light, and three VLC channels were transmitted independently without interfering with each other in a condition where the VLC signals overlapped in space. This configuration is useful in constructing multiple wireless sensor networks that are safe and without interference in locations where LED lamps are used for illumination.

Development of a 250-W high-power modular LED fish-attracting lamp by evaluation of its thermal characteristics

  • Lee, Donggil;Lee, Kyounghoon;Pyeon, Yongbeom;Kim, Seonghun;Bae, Jaehyun
    • 수산해양기술연구
    • /
    • 제51권2호
    • /
    • pp.163-170
    • /
    • 2015
  • Recently LED fish-attracting lamps have been more widely used in fisheries as low-cost and high-efficiency fishing gear, and development of long-life high-efficiency lamps is required through the design of LED packages to optimize heat resistance. This study developed an improved LED fish-attracting lamp with excellent heat performance, which was verified using a numerical model. Heat-resistance design factors such as the heat-radiation fin shape, PCB type, and LED chip count were investigated and optimized. Comparison with a commercial 180-W LED fishing lamp showed that the increase in initial temperature was 40% higher than that of the surrounding LED chip because of design errors in contact thermal resistance. The 250-W LED lamp developed in this study has a characteristic with thermal rising in linearly stable according to the heat source. In addition, luminance efficiency was improved by 20-65% by using flow-visualization simulation. A decrease of 45% in total power consumption with a fuel-cost reduction of over 55% can be expected when using these optimized heat release design factors.

하이브리드 태양광 LED 가로등 컨트롤러의 효율 개선 (Improve the Efficiency of Hybrid Solar LED Street Lamp Controller)

  • 윤중현;김진사
    • 한국전기전자재료학회논문지
    • /
    • 제28권2호
    • /
    • pp.131-136
    • /
    • 2015
  • We develop the 60 W class hybrid solar LED street lamp controller. The controller is providing power via an inverter in the day with the least solar cell and battery and charging the battery for the ESS, acts as a power failure, the built-in battery. Rated output of the fabricated LED street lamp is 300 W or greater battery capacity 300 Wh, discharge time 10 hr, LED street lamp efficiency showed a very high level of light efficiency by about 127 lm/W. In addition, as a result of light distribution pattern according to the distance and the light intensity measurement will be able to ensure a very high quality, show the constant brightness in the distance from the road lights 6 m is about 35~40 lux in uniformity ratio. The proposed hybrid solar LED street lamp system showed a high energy capacity of approximately 1.5 to 152.7% power generation efficiency than typical conventional solar street lamp.

LED 조명등을 이용한 가시광통신 중계기 (A Visible Light Communication Repeater Using an LED Lamp)

  • 이성호
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.189-195
    • /
    • 2016
  • In this paper, we newly introduce a visible light communication (VLC) repeater using the LED array in an LED lamp. The LED array is used for a light source in the repeater, which radiates light both for illumination and data transmission. A VLC repeater is made by adding some electronic circuits to the LED array including a photodetector, a demodulator, and a modulator. The repeater is installed on the ceiling of a room like a conventional LED lamp, receives the VLC signal from an arbitrary transmitter, recovers data, and radiates the signal to wide area in the room. We used a carrier frequency of 100 kHz for the uplink from a transmitter to the repeater, and 500 kHz for the downlink from the repeater to a receiver. The repeater is useful for increasing the transmission path to wide area over the obstacles that may exist between VLC transmitters and receivers.

LED 색광의 음영구역에 대한 살오징어의 행동반응 및 LED 집어등의 어획성능 (Catching efficiency of LED fishing lamp and behavioral reaction of common squid Todarodes pacificus to the shadow section of color LED light)

  • 안영일;정학근
    • 수산해양기술연구
    • /
    • 제47권3호
    • /
    • pp.183-193
    • /
    • 2011
  • This study made a comparative analysis of behavioral reaction of squid to red (624nm), green (524nm), blue (460nm) & white LED light, its arrival time for the shadow section by making the shadow section in the central section of a water tank just like the bottom part of a squid jigging vessel, and on-site catching efficiency of LED fishing lamp with control fishing vessel. The color LED light showing the highest squidgathering rate as against the shadow section was found to be blue LED light with 39.3% rate under the dark (0.05lx) condition. Under the brighter condition than 0.05lx, white LED light was found to have the highest gathering rate of 41.5%. In addition, it was found that squid gathering rate was high at the shadow section which showed 6.3-fold brightness difference between the shadow section and bright section. As for the arrival time for the shadow section, blue LED light was found to be the fastest in attracting squids in 192.7 seconds under the dark condition while the red LED light was the fastest in luring squids in 164.6 seconds under the bright condition. The ratio of the squid-jigging operation and sailing in fuel consumption of the fishing vessel loaded with LED fishing lamp is about 7 to 1, showing most of the fuel is consumed more in sailing than in squid-jigging operation. As for a catch of squid, the control vessel loaded with MH (Metal Halide) fishing lamp had more catch of 600-7,080 squids than the vessel loaded with LED fishing lamp having a catch of 260-1,700 squids. In addition, even in the comparison of a catch per automatic jigging machine, the catch of the vessel loaded with MH fishing lamp excelled that of the vessel loaded with LED fishing lamp in 6 operations of squid jigging out of 9 operations. The ratio of hand-jigging and automatic jigging machine (one line) in the LED fishing lamp vessel was 1:1.1 excepting the case of having a catch only using an automatic jigging machine, showing almost the same with each other in catches, while in case of a MH fishing lamp vessel, its ratio against hand-jigging was 1 to 5.8, showing hand-jigging excelled in catches.

3상 교류전원 LED 램프의 광 플리커 (Light Flicker of Three-Phase AC-powered LED Lamp)

  • 이동원;김병철
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.262-267
    • /
    • 2014
  • This study describes that light flicker of LED lamp is improved by placing an AC-powered LED block in each phase of three-phase AC power. Rectified current is considered as an instantaneous luminous flux because the current flowing through the LED block is proportional to the amount of light emitted by the LED block. Percent flicker is calculated simply by modeling the rectified current flowing through the LED block to a triangular wave current. Percent flicker is 100% in single-phase AC powered LED lamp. Percent flicker of the same level as that in an incandescent lamp (6%~14%) is however, achieved if light emission starts before $40^{\circ}$ in each voltage phase of three-phase AC power.