• Title/Summary/Keyword: LED irradiation

Search Result 222, Processing Time 0.022 seconds

Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

  • Lee, Ji-Hun;Kwon, Young-Hyuk;Herr, Yeek;Shin, Seung-Il;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.135-142
    • /
    • 2011
  • Purpose: The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods: The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy (SEM) was used to examine the surface roughness of the specimens. Results: All experimental conditions of Er:YAG laser irradiation, except the power setting of 100 mJ/pulse for 1 minute and 1.5 minutes, led to an alteration in the implant surface. SEM evaluation showed a decrease in the surface roughness of the implants. However, the difference was not statistically Significant. Alterations of implant surfaces included meltdown and flattening. More extensive alterations were present with increasing laser energy and application time. Conclusions: To ensure no damage to their surfaces, it is recommended that SLA implants be irradiated with an Er:YAG laser below 100 mJ/pulse and 1.5 minutes for detoxifying the implant surfaces.

Effect of Proprioceptive Neuromuscular Facilitation Applied to the Unilateral Upper Extremity on the Muscle Activation of Contralateral Lower Extremity (펀측 상지에 적용된 고유수용성 신경근 촉진법이 반대측 하지의 근 활성도에 미치는 영향)

  • Kim, Kyung-Hwan;Park, Ji-Won;Bae, Sung-Soo
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the effect of Proprioceptive Neuromuscular Facilitation (PNF) applied to the unilateral upper extremity on the muscle activation of contralateral lower extremity. Twenty-two healthy subjects (mean age of 23.7 years) participated in this study. Method : PNF patterns applied on the unilateral upper extremity in all subjects were the flexion/abduction/external rotation and lifting pattern. The hold and appoximation techniques for the irradiation were applied to end range of both patterns. Muscle activations in four patterns were measured in vastus medialis, tibialis anterior, rectus femoris, and gastrocnemius medial muscles of contralateral lower extremity using surface EMG system. Each EMG value in individual muscle was normalized for maximal voluntary contraction. The data were analyzed by one factor analysis of variance with repeated measure test. Result : There were significant differences in the between-subject effect (muscles) and within-subject effect (patterns) in comparison of muscle activation by application of PNF patterns (p<.05). The irradiation led to higher activation in the flexion/abduction/external rotation pattern than that of lifting pattern in all muscles (p<.05). The approximation techniques revealed more activations than these of hold technique in all muscles (p<.05). Conclusion : These results suggest that the application of PNF patterns to the unilateral upper extremity affect on the muscle activation of contralateral lower extremity and increase according to the intensity of resistance. This mechanism of contralateral effect might provide a help to the development of treatment method for the affected side and functional improvement for the patients who have damages of central nervous system or musculoskeletal problems by orthopedic injury.

  • PDF

Synthesis of 125I-Labeled Gold Nanoparticles for a Molecular Imaging (분자영상용 방사성 금 나노입자 합성)

  • Son, Min Ju;Rho, Jong Kook;Lee, Joo-Sang;Jang, Beom-Su;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2012
  • Gold nanoparticles (GNPs) have led to the development of a new field in the diagnosis and treatment of diseases such as cancer. An efficient synthesis of gold nanoparticles within the range of 8~57 nm was established by ${\gamma}-ray$ irradiation. The good point of a radiation-based method is the production of gold nanoparticles with a higher concentration and narrower size distribution compared with conventional methods. The size of gold nanoparticles was controlled using two methods. : (i) varying the ${\gamma}-ray$ irradiation dose of 10 to 25 kGy and (ii) varying the concentration of $HAuCl_4$ solution from 4 to 40 mM. In addition, the GNPs were radiolabeled using $[^{125}I]NaI$ in a simple and fast manner with high yields. The produced gold nanoparticles were characterized using a transmission electron microscopy (TEM), a UV-visible spectrophotometer, and a radio-TLC imaging scanner. From these results, these radiolabeled GNPs can be applicable for a radioisotope tag of biomolecules.

LARGE SCALE FINITE ELEMENT THERMAL ANALYSIS OF THE BOLTS OF A FRENCH PWR CORE INTERNAL BAFFLE STRUCTURE

  • Rupp, Isabelle;Peniguel, Christophe;Tommy-Martin, Michel
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1171-1180
    • /
    • 2009
  • The internal core baffle structure of a French Pressurized Water Reactor (PWR) consists of a collection of baffles and formers that are attached to the barrel. The connections are done thanks to a large number of bolts (about 1500). After inspection, some of the bolts have been found cracked. This has been attributed to the Irradiation Assisted Stress Corrosion Cracking (IASCC). The $Electricit\acute{e}$ De France (EDF) has set up a research program to gain better knowledge of the temperature distribution, which may affect the bolts and the whole structure. The temperature distribution in the structure was calculated thanks to the thermal code SYRTHES that used a finite element approach. The heat transfer between the by-pass flow inside the cavities of the core baffle and the structure was accounted for thanks to a strong thermal coupling between the thermal code SYRTHES and the CFD code named Code_Saturne. The results for the CP0 plant design show that both the high temperature and strong temperature gradients could potentially induce mechanical stresses. The CPY design, where each bolt is individually cooled, had led to a reduction of temperatures inside the structures. A new parallel version of SYRTHES, for calculations on very large meshes and based on MPI, has been developed. A demonstration test on the complete structure that has led to about 1.1 billion linear tetraedra has been calculated on 2048 processors of the EDF Blue Gene computer.

Effects of Light Sources, Light Quality on the Growth Response of Leafy Vegetables in Closed-type Plant Factory System (완전제어형 식물공장에서 광원, 광질에 따른 엽채류 6종의 생육반응)

  • Kim, Sang Bum;Lee, Kyung Mi;Kim, Hae Ran;You, Young Han
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.32-40
    • /
    • 2014
  • This study was conducted to evaluate the growth response of economical six leafy vegetables that are crown daisy, pak-choi and four kinds of lettuce (Red leaf lettuce, Green leaf lettuce, Head lettuce, Romaine lettuce) by light treatment of LED in plant factory. The light treatments were composed of red, blue, red+farred, red+blue, red+blue+white LEDs, irradiation time ratio of the red and blue LED per minute (1 : 1, 2 : 1, 5 : 1, 10 : 1), and duty ratio of mixed light (100%, 99%, 97%). The following results were obtained in different LED light sources treatments: Shoot biomass and S/R ratio of romaine lettuce were the highest under mixed red+blue LEDs. S/R ratio of head lettuce was higher under mixed red+blue+white LEDs than red+blue LEDs. The others showed no difference in LED light treatment. Shoot biomass, total biomass and S/R ratio of green lettuce, head lettuce and pak-choi were highest in the higher red ratio (5 : 1) on irradiation time of red : blue LED ratios. By the different duty ratio (red+blue and red+blue+white LEDs), Under the mixed light of red+blue, shoot and root biomass of crown daisy and romaine lettuce were high in duty ratio of 100% and 99%, and S/R ratio was highest in all the 6 kinds in duty ratio of 97%. All the 6 kinds showed a fine growth state in low duty ratio (97%). Green lettuce, romaine lettuce and pak-choi showed relatively high shoot biomass and total biomass in low duty ratio of 97% under the mixed light of red+blue+white. S/R ratio of romaine lettuce and head lettuce were highest in the duty ratio of 97% with red+blue+white LEDs. Thus, we can cultivate stably without reference to external factors, if we use appropriate light sources and light quality in closed-type plant factory.

Effect of Electron Beam Irradiation on Microbiological and Physicochemical Properties of Dried Red Pepper Powders of Different Origin (원산지별 건고추 분말의 미생물학적 및 이화학적 품질특성에 대한 electron beam 조사처리의 효과)

  • Lee, Hye-Jin;Kim, Gui-Ran;Park, Ki-Hwan;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • The effects of electron beam (e-beam) irradiation at up to 10 kGy on the microbiological and physicochemical properties of dried red pepper powders were studied. Samples from Korea, China, and Vietnam were included in this study. In untreated samples, the total number of microbes, such as total aerobic bacteria, yeasts and molds, was in the range of $10^6-10^7CFU/g$. E-beam irradiation at 5 kGy reduced the microbial load by 2-4 log cycles, thus improving the hygienic quality of the samples. Moisture and pH of the samples were unchanged after e-beam irradiation. Reducing sugar content decreased at 1 kGy, followed by a gradual increase at higher radiation doses. At 5 kGy, no significant changes in the content of capsaicinoids were observed between the irradiated and control samples, while a 10 kGy dose led to a significant decrease. The content of pigments did not exhibit apparent changes with increasing dose of irradiation.

Comparative Effects of Gamma Irradiation and Phosphine Fumigation on Lipid-Related Components of White Ginseng During Post-Treatment Period (감마선과 Phosphine 처리가 백삼의 지방질 관련 성분에 미치는 영향)

  • Kwon, Joong-Ho;Lee, Jung-Eun;Jeong, Seong-Weon;Choi, Kang-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1447-1452
    • /
    • 1999
  • Lipid-related components were comparatively investigated for white ginseng when exposed to both phosphine fumigation and gamma irradiation at 5 kGy or less, which were found effective for improving its biological quality. Fumigation resulted in the increase in pH of the sample, and thereafter it showed a decreasing tendency in all samples during storage for 6 months at ambient $(20^{circ}C/70%\;RH)$ and accelerated $(40^{\circ}C/90%\;RH)$ conditions. The severe conditions led to an apparent browning of the stored samples without significant differences among them, while the sample stored at ambient condition showed negligible changes in its color up to 6 months. The development of browning in the stored sample was in proportional to hydrogen donating ability of the corresponding sample extract. TBA value increased by gamma irradiation gradually decreased with storage time, showing similar values to that of other samples, whereas carbonyl value gradually increased in all samples. Both fumigation and gamma irradiation caused negligible changes in fatty acid composition; however, a partial increase in saturated fatty acid composition and some decrease in polyunsaturated ones were observed with the storage time.

  • PDF

Effects of Supplemental UV-A LED Radiation on Growth and Bioactive Compounds in Spinach (시금치에서 생장 및 생리활성물질에 대한 UV-A LED의 보광 효과)

  • Da-Seul Choi;Jin-Hui Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.45-54
    • /
    • 2024
  • A proper level of UV-A light treatment in terms of intensity, spectrum, and exposure duration is known to have a positive impact on plant growth, photosynthesis, and the biosynthesis of secondary metabolites. However, there are few studies investigating the physiological responses of spinach (Spinacia oleracea L.) to UV radiation. Hence, this study aimed to assess the effects of short-term UV-A radiation on the growth and bioactive compounds of spinach. Spinach seedlings were cultivated in a vertical farm module under the following environmental conditions: photosynthetic photon flux density 200 µmol·m-2·s-1, white LED, 12 h on/off, 20℃ air temperature, 70% relative humidity, and 500 µmol·mol-1 CO2 concentration. After 5 weeks of sowing, the seedlings were subjected to continuous UV-A (peak wavelength; 385 nm) irradiation at two different energy levels: 20 W·m-2 and 40 W·m-2 for 7 days. As a result, the UV-A20W treatment increased the shoot fresh and dry weights of spinach. However, there were no significant differences observed in photosynthetic parameters between the UV-A treatments and the control. The maximum quantum efficiency of photosystem II (Fv/Fm) consistently decreased across all UV-A treatments for 7 days in UV-A treatments. Additionally, the total phenolic content and antioxidant capacity increased in the UV-A20W treatment at 7 days of treatment as well as the total flavonoid content significantly increased at 5 and 7 days of treatment. These findings suggest that supplemental UV-A LED radiation can enhance the growth and quality of spinach cultivated in closed type plant production systems such as vertical farms.

Novel Activation by Electrochemical Potentiostatic Method

  • Lee, Hak-Hyeong;Lee, Jun-Gi;Jeong, Dong-Ryeol;Gwon, Gwang-U;Kim, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.29.1-29.1
    • /
    • 2009
  • Fabrication of good quality P-type GaN remained as a challenge for many years which hindered the III-V nitrides from yielding visible light emitting devices. Firstly Amano et al succeeded in obtaining P-type GaN films using Mg doping and post Low Energy Electron Beam Irradiation (LEEBI) treatment. However only few region of the P-GaN was activated by LEEBI treatment. Later Nakamura et al succeeded in producing good quality P-GaN by thermal annealing method in which the as deposited P-GaN samples were annealed in N2 ambient at temperatures above $600^{\circ}C$. The carrier concentration of N type and P-type GaN differs by one order which have a major effect in AlGaN based deep UV-LED fabrication. So increasing the P-type GaN concentration becomes necessary. In this study we have proposed a novel method of activating P-type GaN by electrochemical potentiostatic method. Hydrogen bond in the Mg-H complexes of the P-type GaN is removed by electrochemical reaction using KOH solution as an electrolyte solution. Full structure LED sample grown by MOCVD serves as anode and platinum electrode serves as cathode. Experiments are performed by varying KOH concentration, process time and applied voltage. Secondary Ion Mass Spectroscopy (SIMS) analysis is performed to determine the hydrogen concentration in the P-GaN sample activated by annealing and electrochemical method. Results suggest that the hydrogen concentration is lesser in P-GaN sample activated by electrochemical method than conventional annealing method. The output power of the LED is also enhanced for full structure samples with electrochemical activated P-GaN. Thus we propose an efficient method for P-GaN activation by electrochemical reaction. 30% improvement in light output is obtained by electrochemical activation method.

  • PDF

Growth Characteristics of Lettuce under Different Frequency of Pulse Lighting and RGB Ratio of LEDs (LED의 간헐조명과 RGB 비율에 따른 상추의 품종별 생육 특성)

  • Kim, Sungjin;Bok, Gwonjeong;Lee, Gongin;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • This study was aimed to investigate the effect of 1)irradiation with several different ratios using red, green, and blue LEDs and 2)various pulsed light irradiation with 50% duty ratio using red and blue LEDs on the growth and morphogenesis of three lettuce cultivars (Lactuca sativar L. cv. 'Jukchukmeon', 'Lolo Rosa', and 'Grand Rapid') in hydroponics culture system for 4 weeks after transplanting. Seeds were sown in rock-wool plug trays and they were placed in a culture room which was controlled at $23{\pm}1^{\circ}C/18{\pm}1^{\circ}C$ temperature and 50-60/70-85% for day and night, respectively, during cultivation period. Irradiated RGB ratios with LEDs were 6:3:1, 5:2.5:2.5, 3:3:4, 2:2:6, and 1:1:8 with $110{\pm}3{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD on the surface of cultivation bed. The frequencies of pulsed lighting was 50, 100, 500, 1,000, 5,000, 10,000, 25,000Hz (20, 10, 0.1, 0.04 ms) with red and blue LEDs and 50% duty ratio. At the RGB ratio of 6:3:1, the average fresh weight of 'Jukchukmeon' was significantly higher than that of other RGB treatments, but no significant difference compared to the fluorescent treatment. The average fresh weight at 1:1:8 RGB ratio in 'Lolo Rosa' was significantly lower than that of other RGB treatments. Leaf number and fresh weight of 'Grand Rapid' were significantly lower in the control and 1:1:8 RGB treatments, compared to the other RGB treatments. As the ratio of blue light increased, leaf length decreased and leaf shape became round in three lettuces. Although there is little change in growth, it could not be found any tendency to affect the growth and morphogenesis of three lettuces caused by increasing or decreasing frequency of pulsed lighting with 50% duty ratio at the $72{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD.