• Title/Summary/Keyword: LED fluorescence

Search Result 84, Processing Time 0.02 seconds

Quinacrin Induces Cytochrome c-dependent Apoptotic Signaling in Human Cervical Carcinoma Cells

  • Fasanmade, Adedigbo A.;Owuor, Edward D.;Ee, Rachel P.L.;Qato, Dima;Heller, Mark;Kong, Ah Ng Tony
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.126-135
    • /
    • 2001
  • Quinacrine (QU), a phospholipase-A2 (PLA-2) inhibitor has been used clinically as a chemotherapeutic adjuvant. To understand the mechanisms leading to its chemotherapeutic effect, we have investigated QU-induced apoptotic signaling pathways in human cervical squamous carcinoma HeLa cells. In this study, we found that QU induced cytochrome c-dependent apoptotic signaling. The release of pro-apoptotic cytochrome c was QU concentration- and time-dependent, and preceded activation of caspase-9 and -3. Flow cytometric FACScan analysis using fluorescence intensities of $DiOC_6$/ demonstrated that QU-induced cytochrome c release was independent of mitochondrial permeability transition (MPT), since the concentrations of QU that induced cytochrome c release did not alter mitochondrial membrane potential (${\blacktriangle}{\Psi}_m$). Moreover, kinetic analysis of caspase activities showed that cytochrome c release led to the activation of caspase-9 and downstream death effector caspase-3, Caspase-3 inhibitor (Ac-DEVD-CHO) partially blocked QU-induced apoptosis, suggesting the importance of caspase-3 in this apoptotic signaling mechanism. Supplementation with arachidonic acid (AA) sustained caspase-3 activation induced by QU. Using inhibitors against cellular arachidonate metabolism of lipooxygenase (Nordihydroxyguaiaretic Acid, NDGA) and cyclooxygenase (5,8,11,14-Eicosatetraynoic Acid, ETYA) demonstrated that QU-induced apoptotic signaling may be dependent on its role as a PLA-2 inhibitor. Interestingly, NDCA attenuated QU-induced cytochrome c release, caspase activity as well as apoptotic cell death. The blockade of cytochrome c release by NDCA was much more effective than that attained with cyclosporin A (CsA), a MPT inhibitor. ETYA was not effective in blocking cytochrome c release, except under very high concentrations. Caspase inhibitor z-VAD blocked the release of cytochrome c suggesting that this signaling event is caspase dependent, and caspase-8 activation may be upstream of the mitochondrial events. In summary, we report that QU induced cytochrome c-dependent apoptotic signaling cascade, which may be dependent on its role as a PLA-2 inhibitor. This apoptotic mechanism induced by QU may contribute to its known chemotherapeutic effects.

  • PDF

Effects of the Light Source of LEDs on the Physiological and Flowering Response of Endangered Plant Silene capitata Kom. (LED광질에 따른 분홍장구채(Silene capitata Kom.)의 생리 및 개화 반응)

  • Park, Jae Hoon;Lee, Eung Pill;Lee, Soo In;Jang, Rae Ha;An, Kyung Ho;You, Young Han
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.5
    • /
    • pp.821-828
    • /
    • 2016
  • We examed physiological and flowering response of S. capitata, the endangered plant in Korea, under LED light conditions in plant factory to cultivate artificially for conservation. We cultivated S. capitata and measured its physiological responses and the number of flowers under red, blue, white, red+far-red mixed, red+blue mixed, and red+blue+white mixed light. The results showed that its photosynthetic rate and chlorophyll content were recorded relatively high in red+blue+white and red+blue mixed light respectively. Transpiration rate and stomatal conductance appeared relatively high in the white single light while water use efficiency was no difference. Photochemical efficiency of photochemical photosystem II by minimum and maximum chlorophyll fluorescence was the highest in the red+blue+white mixed light condition than other ones. The number of flowers of S. capitata was at its peak under the red light or red+far-red mixed light. Therefore, we conclude that the most efficient way to grow for flowering of S. capitata is to provide red light or red+far-red mixed light in the plant factory.

Effects of Mitomycin C on Sister Chromatid Exchanges in Cultured Human Lympocytes (항암제 Mitomycin C가 배양임파구의 자매염색분체 교환에 미치는 영향)

  • Hwang, In-Dam;Ki, No-Suk;Lee, Jeong-Sang;Kim, Nam-Song;Mun, Tae-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.2 s.20
    • /
    • pp.244-251
    • /
    • 1986
  • Sister chromatid exchanges(SCEs) and cell cycle kinetics were proposed as a sensitive and quantitative assay for mutagenicity and cytotoxicity in short-term cultures of phytohema-gglutinin(PHA)-stimu1ated human 1ymphocytes. Therefore, this study was performed to investigate the relation between the cytotoxic effects and sister chromatid exchanges. The resultes are summarized as follows: 1) The frequency of SCEs per cell are $13.1{\pm}2.8$ in the lower concentration of $6.25{\times}10^{-9}M\;and\;75.8{\pm}8.2$ in the highest concentration of $1.00{\pm}10^{-7}M$. Mitotic index is decreased in the higher concentration of mitomycin C. The result indicates that mitomycin C led to a dose dependent increase in SCE frequency, but decease in mitotic index. 2) Chromosomal analysis was performed on metaphase cells that have divided one, two, and three or more times for cell cycle kinetics by fluorescence-plus-Giemsa(FPG) technique. According to the increased concentration of mitomycin C, the proportion of metaphase cells in the first are profoundly increased but the cells of third division are greatly decreased. 3) The frequency of SCEs per chromosome by chromosomal group are decreased gradually from A group to G group. But relationships between specific chromosomal group and SCE frequency are not found.

  • PDF

Blue-light Induces the Selective Cell Death of Photoreceptors in Mouse Retina (청색광에 의한 마우스 망막손상에서 선택적 광수용세포의 사멸)

  • Kang, Seo-young;Hong, Ji Eun;Choi, Eun jung;Lyu, Jungmook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2016
  • Purpose: The study was conducted to determine that photoreceptors of mouse having pigment in RPE(retinal pigment epithelium) can be damaged by blue-light and apoptosis of specific cells among photoreceptors are induced by blue-light, and to assist the investigation of AMD(Age-related macular degeneration) mechanisms and development of AMD drugs. Methods: C57Black mice were injured by irradiating $2800{\pm}10lux$ of 463 nm LED for 6 hours after 24 hours dark adaptation and eyes were enucleated 1, 3, 7 days. Damage of retina induced by blue-light was determined by western blotting GFAP(Glial fibrillary acidic protein) expression. In the light-injured retina, cell death of photoreceptors was determined by TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. ERK(Extracellular signal-regulated kinases), JNK, and SRC(sarcoma) expression were assessed by western blotting to determine regulated pathway. Blue light-injured retina were immunostained with antibodies against Opsin and Rhodopsin as markers of photoreceptors to compared the damage cone cells with rod cells. Results: After 1, 3 and 7 days from exposure to blue-light, thickness of retina was more decreased than control, and more decreased at nuclear layer than at outer plexiform layer and GFAP expression was increased day 1 after blue-light injured. While phosphorylated ERK and SRC protein expressions at day 1 were increased after blue-light injured, phosphorylated c-JUN was decreased. Fluorescence intensity analysis showed that markers of cone and rod cells were decreased after blue-light injured and Opsin was more decreased than Rhodopsin. Conclusions: The study suggests possibilities that the blue-light promotes retinal damage and causes apoptotic cell death via ERK and SRC pathway in mouse retina, and blue-light retinal damage is more induced cone cells apoptosis than rod cells directly.