• Title/Summary/Keyword: LED Streetlight

Search Result 25, Processing Time 0.027 seconds

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

A Development of Multi-Sensors LED Streetlight Lighting Control System Based on RTOS (RTOS 기반의 다중센서 LED 가로등 점등제어 시스템 설계)

  • In, Chi-Goog;Lin, Chi-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1020-1026
    • /
    • 2012
  • In this paper, we proposed a RTOS-based lighting control system to improve energy efficiency. This proposed system, real time process was designed to the specified division of the LED streetlight control module for the RTOS-based lighting control into three different tasks. The first task transmits LED lighting signal by measuring illuminance, and the second task transmits motion detecting signal using motion detector. In the third task, lighting control to LED was designed through passed control signal from other tasks The execution status was examined ports that are directly to the ATmega128 MCU for the verification of the system, and illuminance distribution and operating conditions were verified through LED street field test. The proposed RTOS-based lighting control system has brought improving system performance and also facilitate an addition of other functions, and it was possible to optimize energy saving by intelligent lighting pattern control.

A Design of the Solar Tracker for LED Streetlight in Using Solar Cell (태양전지를 이용한 LED 가로등의 태양광 추적 장치 설계)

  • Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.1-9
    • /
    • 2013
  • A standalone LED lighting system in using solar energy has been used usually less than 70W of lighting power because of a troublesome installation and maintenance. In this system, as more and more LED lighting power increases, the capacity of photovoltaic panel does proportionally, and to improve the charging efficiency of solar energy, MPPT(Maximum Power Point Tracking) techniques is used frequently, but the solar tracker is not. In this paper, a solar tracker which traces the light of the sun in varying hour to hour is studied to apply to the standalone LED lighting system. This solar tracker consists of twin axis for tracing the azimuth and altitude respectively, and it has a robust structure with safe mode to stand a strong wind. As a result of analysis, generating efficiency of the traced type has improved on the fixed one 28.84% on average.

A Study on Location Tracking Streetlight (위치추적 가로등에 관한 연구)

  • Kim, Bum-Su;Kim, Seung-Goo;Song, Hyeong-Ho;Kim, Bo-Ryeon;Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1275-1280
    • /
    • 2018
  • We made a smartphone interlocking location tracking streetlight and remote display device to compensate the defect of real time identifiable CCTV streetlights and child safety notification applications. It controls brightness of LED by detecting the surrounding brightness and objects with ultrasonic sensor and illuminance senor. The CCTV receives the location of smartphone by Bluetooth and takes the target of the location. It realizes a wireless transmission system that the video is upload to the tablet PC via WiFi.

Finding and Analysis of Defective Elements of an LED Streetlight Lamp Based on the Product Liability (PL에 근거한 LED 가로등의 결함 요소 발굴 및 분석)

  • Kim, Hyang-Kon;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.632-632
    • /
    • 2009
  • The purpose of this study is to present the range of defects mentioned in the Product Liability (PL) and to establish an objective basis and grounds for the analysis of accidents expected to happen by analyzing and presenting the external flame pattern and electrical characteristics of an LED streetlight lamp, a new lighting lamp. From the analysis of the cross-section of a cable carbonized by an external flame, it was observed that the wire's strand and insulation material had solidly adhered, and that greater voids were formed at the surface than at the center. Irregular carbide lumps were formed in the globe directly exposed to the flame, and the globe carbonized by the indirect flame showed characteristics that they had melted and flowed downward. It was found that the forward and backward resistances of the normal LED were approximately 1.74 [$M{\Omega}$] and 140 [$M{\Omega}$], respectively. The lamp burnt by the strong flame exhibited infinite forward and backward resistances and the LED did not emit light. The carbonized LED lamp was gray and exhibited fine delaminations. According to the Product Liability, a product defect signifies a simple product defect. Most of the defects were caused by the lack of stability, and the defect of the product itself occurred during the design and manufacture. The defects in warnings and markings include an insufficiency of handling manuals and warnings, expressive warranty violations, defective markings, etc. In order to prevent an accident resulting from a product, it is necessary to prepare safety warnings and documentation, establish clear-cut lines of liabilities, and subscribe insurances. However, it could be seen that important factors against the Product Liability were product improvement, response to compensation requests and law suits, credit restoration, etc.

New Lighting Control System for Light Devices (새로운 조명기기 점등제어 시스템)

  • In, Chi-Goog;Yoon, Dal-Hwan;Lin, Chi-Ho
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.261-266
    • /
    • 2011
  • In this paper, new efficient lighting control system for light devices is proposed to reduce power consumption and increases LED life-cycle and heat efficiency of LED lighting module. The new proposed lighting control system for light devices divides into 4 stages according to the illuminance surrounding by measuring illuminance and apply to automatic pattern lighting algorithm. And via level check will be light up for set time by applying intersection lighting algorithm of magic square pattern forming a fully symmetrical. Experimental analysis results, shows heating value and power consumption reduced to maximum 30 percent and lifetime of LED improved to maximum 60 percent in comparison with previous lighting system so applying system to LED streetlight, stable and high energy efficiency can be acquired.

Development of Convergence LED Streetlight and Speed Bump Using Solar Cell and Piezoelectric Element (태양광과 압전소자를 이용한 융복합 LED 발광 과속방지턱 겸용 가로등 개발)

  • Nahm, Eui-Seok;Cho, Han-Jin
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • In driving at evening or night, we are not able to recognize the speed bump and so stop suddenly. It could result in accidents. And also, we have a restriction of street light installation in farm road because it could be harmful to the crops and driver could not recognize the walking people. It needs to develop the speed bump with light and streetlight to be non harmful to the crops. So, we develop both the speed bump and streetlight with LED which could be non harmful to the crops and be increased recognition of walking people in farm road. For LED lighting power, we use the solar cells, and piezoelectric elements. It has automatic on/off according to power saving rates without illumination sensor. Minimization of circuit elements and design of minimum resisters and low power LED was used for power saving in assuring 3-days.

A Study on the Lighting Distribution Optimal Design of 250 W LED Streetlight (250 W급 LED가로등의 배광 최적설계에 관한 연구)

  • Shin, Wang-Soo;Lee, Seung-Min;Gwon, Young-Guk;Lee, Jin-Youle;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.408-413
    • /
    • 2015
  • Road lighting has emerged in importance as an essential system to secure safety and visibility for drivers and pedestrians. According to the Road Lighting Standards (KS A 3701), the luminance uniformity (U0) should be 0.4, the luminance uniformity for lanes (UI) should be 0.5, and a threshold increment (TI) of 10% should be satisfied. In this study, we conducted simulations using the Relux program in which the secondary optical lens was applied to a 21 W engine. Ten LED engines were installed on a two-way four-lane road, and the simulation result satisfied the requirements with U0 0.47, UI 0.63 and TI 8%. The U0, UI, and TI were compared with the angle of the LED streetlight varied in the range of $9^{\circ}{\sim}15^{\circ}$ with $0.5^{\circ}$ intervals. The range was selected as ${\pm}25%$ of the standard inclination angle of $12^{\circ}$ according to the Road Lighting Standard. The U0 was high and the UI and TI were low when the tilting angle was in the range of $9.5^{\circ}{\sim}10.5^{\circ}$. Consequently, an optimum-design of lighting distribution was obtained for the concrete two-way four-lane road when the inclination angle was $9^{\circ}$.

Smart Streetlight based on Accident Recognition using Raspberry Pi Camera OpenCV (라즈베리파이 카메라 OpenCV를 활용한 사고 인식 기반 스마트 가로등)

  • Dong-Jin, Kim;Won-Seok, Choi;Sung-Pyo, Ju;Seung-Min, Yoo;Jae-Yong, Choi;Hyoung-Keun, Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1229-1236
    • /
    • 2022
  • In this paper, we studied accident-aware smart streetlights to prevent secondary accidents when driving on highways. It used Arduino and sensors to inform drivers of weather conditions, incorporated functions such as LED brightness control according to sunlight and night driving vehicles, and used Raspberry Pi camera OpenCV to learn various traffic accidents, natural disasters, and wildlife.

Development of Solar Power System of Driving a Hybrid LED Streetlight (LED 가로등 구동용 하이브리드 태양광 전원장치 개발)

  • Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6006-6012
    • /
    • 2012
  • General solar street light system needs two separate power supply for charging the battery and driving LED Lamp. In this study, one power supply is used for both charging battery and driving LED lamp. In particular, in order to increase the efficiency of the equipment, (maximum power point tracking: MPPT) was applied which is widely adopted in grid-connected solar systems. LED driver embodied using current control routine of charger into Essential constant current system.