• Title/Summary/Keyword: LED Marker

Search Result 60, Processing Time 0.027 seconds

IR LED Marker Processing Technique using Inpainting Method (인페인팅 기법을 활용한 IR LED 마커 처리 기법)

  • Ryu, Nam-Hoon;Lee, Hye-Mi;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.375-377
    • /
    • 2011
  • The augmented reality is a technology which expresses the information hardly obtained in the real world by synthesizing virtual objects in the real world. This study uses IR LED marker to obtain the coordination of real world for registration of virtual objects. Since the IR LED marker is inserted in target object thus it has properties of invisible markers. To realize the augmented reality, the existence of marker can be observed in camera input image. Therefore, this paper provides a method to give the properties of perfect invisible marker by using inpainting technology when realizing IR LED marker.

  • PDF

Adaptive planar vision marker composed of LED arrays for sensing under low visibility

  • Kim, Kyukwang;Hyun, Jieum;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In image processing and robotic applications, two-dimensional (2D) black and white patterned planar markers are widely used. However, these markers are not detectable in low visibility environment and they are not changeable. This research proposes an active and adaptive marker node, which displays 2D marker patterns using light emitting diode (LED) arrays for easier recognition in the foggy or turbid underwater environments. Because each node is made to blink at a different frequency, active LED marker nodes were distinguishable from each other from a long distance without increasing the size of the marker. We expect that the proposed system can be used in various harsh conditions where the conventional marker systems are not applicable because of low visibility issues. The proposed system is still compatible with the conventional marker as the displayed patterns are identical.

Expression Technique of the Plurality IR LED Marker using OOK Method for Augmented Reality (증강현실에서 OOK 기법을 이용한 다수의 IR LED 마커 표현 기술)

  • Lee, Hye-Mi;Ryu, Nam-Hoon;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.433-438
    • /
    • 2012
  • With technologies available now, there are only a few virtual objects that augmented reality content can create. So, wider application of it is limited. If people want to realize any augmented reality content, out of a vast amount of materials available as well as virtual objects, the number of virtual objects that markers can render should be made to go up along with the content. In a precedent study, IR LEDs markers render marker information following On-Off signals. The number of LEDs should be raised to render as much information as possible, subsequently leading to the problem of oversized markers. This problem can be solved by generating data signals through the blinking of LEDs. This research puts forward OOK Code algorithm that represents the mode of data transmission using the light of LEDs. The amount of information that can be rendered by a marker increases and the size of the marker gets smaller, which is a merit, when it receives data signals from light.

CEM Contextual Data Creation and Extraction Technology based on OOK of Augmented Reality (증강현실에서 OOK 기반의 CEM 맥락 데이터 생성 및 추출 기술)

  • Lee, Hye-Mi;Ryu, Nam-Hoon;Kim, Eung-Kon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.20-30
    • /
    • 2012
  • The biggest advantage of AR is that it allows unique experience in the real world through a virtual object. However, there is a limit in the marker techniques to do registration for the virtual object. Therefore, it is possible for a complication that only allows restrictive interaction to come up. This paper provides marker technique of the next generation which can supplement limitations of existing marker technique. Such marker is a combination of IR LED's, and is a convergence of LED VCL concepts of M2M. Environment where the user belongs to and their unique choice will be expressed into one context. Also, the context will be delivered to the system through OOK IR LED marker algorithm. Marker can be operated on the spot to change virtual objects according to the user's taste, registration can be done at the same time for several virtual objects, and control become possible.

IR LED Marker Detection Method for Production of Multiple Marker based on Augmented Reality (다수 마커의 제작을 위한 증강현실 기반의 IR LED 마커 검출 기법)

  • Lee, Hye-Mi;Ryu, Nam-Hoon;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.457-463
    • /
    • 2011
  • As computer related technologies are developed, interests in augmented reality technologies are greatly increasing. Augmented reality is a technology that composes digital contents from the real input images through camera and it enables interaction with users. This study designed a directional marker using LED light that emits infrared ray, then, provided a detection algorithm and a marker information extraction method that can realize various virtual objects as augmented reality from one marker. The newly designed method provides a solution to settle the problems in existing marker technologies such as decrease of immersiveness and read rate and single information expression, and at the same time it can minimize the cost or time consumption in marker information storage.

A Study on the Straight Path Prediction Technology of White LED Marker-based AGV in Indoor Environment (실내 환경에서 White LED 마커 기반 무인 운반차의 직진경로 예측 기술 연구)

  • Woo, Deok gun;vinayagam, Mariappan;Kim, Young min;Cha, Jae sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.48-54
    • /
    • 2018
  • With the 4th industry era, smart factories are emerging. In the era of multi-product small scale production, unmanned transportation vehicles are rapidly increasing in utilization of unmanned transportation vehicles that carry and arrange goods in the work space. The conventional unmanned vehicle detected its position by using the guided line method and the position based method for indoor location recognition and movement. This method has disadvantages of initial high cost and maintenance / maintenance. In this paper, to solve the disadvantages, the method of predicting the direct path of the unmanned vehicle through the Kalman filter is verified using the white LED marker of the warehouse and the position data and the image data of the white LED marker recognition image. Through this, the reliability of the linear movement which occupies the most part in the lattice structure is secured. It is also expected that the reliance on additional position sensors will also be reduced.

Implementation of URL Connecting Application Service Platform Based on Recognition of AR Maker Using LED Panel and Smartphone (LED 전광판과 스마트폰을 이용한 AR 마커인식 기반의 URL 연결 서비스 플랫폼 구현)

  • Park, Kunwon;Hwang, Junho;Yoo, Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.8
    • /
    • pp.692-698
    • /
    • 2013
  • As the mobile marketing through the smartphone has gradually increased, the smartphone application services using the AR marker, QR codes and augmented reality have attracted much attention. Furthermore the outdoor advertising is migrated to LED signage, which brings the visible light wireless communication technologies to the trial for mobile marketing. In this paper we present the implementation of AR marker-based URL access application services through smartphone camera using visible-light wireless communication technologies. We analyze the performance of the implemented system in terms of connection time and success rate.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Technical-note : Real-time Evaluation System for Quantitative Dynamic Fitting during Pedaling (단신 : 페달링 시 정량적인 동적 피팅을 위한 실시간 평가 시스템)

  • Lee, Joo-Hack;Kang, Dong-Won;Bae, Jae-Hyuk;Shin, Yoon-Ho;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • In this study, a real-time evaluation system for quantitative dynamic fitting during pedaling was developed. The system is consisted of LED markers, a digital camera connected to a computer and a marker detecting program. LED markers are attached to hip, knee, ankle joint and fifth metatarsal in the sagittal plane. Playstation3 eye which is selected as a main digital camera in this paper has many merits for using motion capture, such as high FPS (Frame per second) about 180FPS, $320{\times}240$ resolution, and low-cost with easy to use. The maker detecting program was made by using Labview2010 with Vision builder. The program was made up of three parts, image acquisition & processing, marker detection & joint angle calculation, and output section. The digital camera's image was acquired in 95FPS, and the program was set-up to measure the lower-joint angle in real-time, providing the user as a graph, and allowing to save it as a test file. The system was verified by pedalling at three saddle heights (knee angle: 25, 35, $45^{\circ}$) and three cadences (30, 60, 90 rpm) at each saddle heights by using Holmes method, a method of measuring lower limbs angle, to determine the saddle height. The result has shown low average error and strong correlation of the system, respectively, $1.18{\pm}0.44^{\circ}$, $0.99{\pm}0.01^{\circ}$. There was little error due to the changes in the saddle height but absolute error occurred by cadence. Considering the average error is approximately $1^{\circ}$, it is a suitable system for quantitative dynamic fitting evaluation. It is necessary to decrease error by using two digital camera with frontal and sagittal plane in future study.

Development of a Real Time Three-Dimensional Motion Capture System by Using Single PSD Unit (단일 PSD를 이용한 실시간 3차원 모션캡쳐 시스템 개발)

  • Jo, Yong-Jun;Oh, Choon-Suk;Ryu, Young-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1074-1080
    • /
    • 2006
  • Motion capture systems are gaining popularity in entertainment, medicine, sports, education, and industry, with animation and gaming applications for entertainment taking the lead. A wide variety of systems are available for motion capture, but most of them are complicated and expensive. In the general class of optical motion capture, two or more optical sensors are needed to measure the 3D positions of the markers attached to the body. Recently, a 3D motion capture system using two Position Sensitive Detector (PSD) optical sensors was introduced to capture high-speed motion of an active infrared LED marker. The PSD-based system, however, is limited by a geometric calibration procedure for two PSD sensor modules that is too difficult for common customers. In this research, we have introduced a new system that used a single PSD sensor unit to obtain 3D positions of active IR LED-based markers. This new system is easy to calibrate and inexpensive.