• Title/Summary/Keyword: LED Lamp

Search Result 422, Processing Time 0.028 seconds

Temperature Control for LED lamps using RF Communication (LED 조명 발열의 순차 제어시스템 연구)

  • Choi, Hyeng-Sik;Shin, Hee-Young;Oh, Ji-Youn;Lee, Sang-Seop
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.130-132
    • /
    • 2012
  • In this paper, a temperature control for LED(Light Emitting Diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan with various size of heat sinks was performed. To minimize the fan sound noise, optimal size of the heat sink was studied. Also, a teleoperting control of LED lamps using RF communication was studied.

  • PDF

Development of a 250-W high-power modular LED fish-attracting lamp by evaluation of its thermal characteristics

  • Lee, Donggil;Lee, Kyounghoon;Pyeon, Yongbeom;Kim, Seonghun;Bae, Jaehyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.163-170
    • /
    • 2015
  • Recently LED fish-attracting lamps have been more widely used in fisheries as low-cost and high-efficiency fishing gear, and development of long-life high-efficiency lamps is required through the design of LED packages to optimize heat resistance. This study developed an improved LED fish-attracting lamp with excellent heat performance, which was verified using a numerical model. Heat-resistance design factors such as the heat-radiation fin shape, PCB type, and LED chip count were investigated and optimized. Comparison with a commercial 180-W LED fishing lamp showed that the increase in initial temperature was 40% higher than that of the surrounding LED chip because of design errors in contact thermal resistance. The 250-W LED lamp developed in this study has a characteristic with thermal rising in linearly stable according to the heat source. In addition, luminance efficiency was improved by 20-65% by using flow-visualization simulation. A decrease of 45% in total power consumption with a fuel-cost reduction of over 55% can be expected when using these optimized heat release design factors.

A Comparative Study on the Luminous Flux by Degree of Non-directional LED Lamps and Incandescent lamp (확산형 LED램프와 백열램프의 각도별 광속에 관한 비교연구)

  • Park, Chang-Yong;Seo, Jeong-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.32-39
    • /
    • 2014
  • In general, non-directional LED lamps including high transmittance cover are more advantageous than directional LED lamps, which are efficient enough to improve luminous efficacy and obtain certification, allowing wide manufacture, sale, and distribution. Although KS C 7651(Self-ballasted LED lamps-Safety and performance requirements) was revised in July 2013, however, many companies are having a lot of difficulties in keeping the certification and product development for the lack of the photometric analysis for non-directional LED lamps. In this paper, through the measurement of the angular distribution of luminous flux of incandescent lamp and non-directional LED lamps, we examined the reasonability of non-directional LED lamps' standards as suggested in KS C 7651. According to the results, even if non-directional LED lamps satisfy KS C 7651, when compared to an incandescent lamp, they showed less diffusive than the incandescent lamp and the distribution of the luminous flux depending on the angle fluctuated greatly even among LED lamps. Judging by the result, the current standard of the non-directional LED lamps, KS C 7651, has been comprehended that the angular distribution of the luminous flux needs to be presented after being much more thoroughly standardized.

Design and Fabrication of an Energy Saving LED-Fishing Lamp (에너지 절감형 LED 집어등의 설계 및 제작)

  • Choi, Sung-Kuk;Kim, Sun-Jae;Park, Dae-Won;Kil, Gyung-Suk;Choi, Chul-Young;Song, Sang-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.515-521
    • /
    • 2010
  • This paper dealt with the design and fabrication of an energy saving light emitting diode (LED) fishing lamp. Most fishes such as a squid, horse mackerel, mackerel, sardine and scabbard fish have characteristics for phototaxis and fishing lamps have promoted the fishery efficiency using their photo-reaction. In these days, metal halide lamp (MHL) as the fishing lamp, which consumes 1.5 kW and radiates harmful ultraviolet rays are mainly used. To develop the LED-fishing lamp, the penetration depth in sea water and the photo-reaction of a squid as light wavelength were studied. The experimental results showed the both characteristics were existed in blue color around 470 nm. Based on the results, we manufactured a 160 W and blue LED-fishing lamp which is consume about one-nine of 1.5 kW MHL. As energy saving effect, the use of LED-fishing lamp can reduce 128 kWh per an hour which is correspond to $CO_2$ of 86 kg for a 22ton-fishing boat equipped with 80-1.5 kW MHL. Now, the prototype LED fishing lampsare being evaluated on two fishing boats.

Rights of Design Development of External Design of LED LAMP (중소기업의 디자인 권리 창출을 위한 터널 LED 조명 개발)

  • Hur, Jin-Yong;Yoon, Myung-Han
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.114-122
    • /
    • 2012
  • Local company which has excellent patent technique is required design development for sales growth and enhancement of market competitiveness. For the solution about this requirement of small and medium company, the patent office and Chooncheognbukdo are jointly progressing the value consideration business of local design, and the design is improved through this. This study is to show the illustration of the design developed by business process of V company for 'the development of external design of LED LAMP fitted into the environment in tunnel' as a project ordered by S company, and the improvement patent was created with simulation development in considering design recognition of supporting company and the competitiveness of the product by successful performance of the external design development based on patent technique. Through the effective change method of LED LAMP in tunnel and the suggested result of LED LAMP reflection method, the beneficiary company has progressed the corporate body from the individual business, and at present the primary product was completed by securing manufacturing basis facilities for manufacturing and sales. Local small and medium company became a strong design company by connecting design development supporting business through the supporting method of the fusion of design and patent.

Study on the Development of High-efficiency, Long-life LED Fog Lamps for the Used Car Market

  • Park, Sang Jun;Lee, Young Lim
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • LED lighting,considered to be a new growth industry, has attracted a great deal of attention due to its higher illumination and longer life time than existing light sources. In this study, high-efficiency and long-life LED fog lamps for automobiles were developed, which can substitute the existing 27 W halogen fog lamps for a used car market. For this purpose, the number of LED modules, the body, heat sink, and the output of the fog lamp were first optimized through a numerical analysis. Then, a 10 W-class LED fog lamp was prototyped based on the optimized numerical model, and the performance of the fog lamp was successfully verified through the experiments.

Operating performance of squid jigging vessel using the LED and metal halide fishing lamp combination (LED와 메탈핼라이드 집어등을 겸용한 오징어채낚기 어선의 조업 성능)

  • An, Heui-Chun;Bae, Jae-Hyun;Bae, Bong-Seong;Park, Jong-Myung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.4
    • /
    • pp.395-403
    • /
    • 2013
  • Fishing efficiency of the squid jigging vessel using the LED and metal halide fishing lamp combination was analyzed to reduce the cost for fishing operation utilizing the fishing light system for high degree of efficiency in the squid jigging fishery (one of the representative coastal and offshore fisheries in Korea). This study aims to improve the nature of existing LED lamps and to develop fan-shaped LED lights having 180W of power and ${\pm}45^{\circ}$ angle of light intensity distribution. The marine experiment for making a comparison of their fishing efficiency was tested by a 9.77 tons fishing vessel from Oct. through Dec. 2012. As a result, experimental fishing vessel showed slightly higher fishing efficiency than the average of metal halide lamp-equipped vessel and 20% energy savings. This means that the combination of LED and metal halide lamps would provide an efficient way to lower energy consumption while maintaining fishing efficiency.

Analysis on the Light Source Efficiency of CCFL and LED Monitors (CCFL 및 LED 모니터 광원 효율 분석)

  • Shin, Hee-Woo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.44-50
    • /
    • 2021
  • In this paper, we analyze the efficiency of light sources of CCFL and LED monitors. Cold Cathode Fluorescent Lamp (CCFL), which is widely used as a light source for LCD display, supplies a high voltage of 1,200[V] or more when it is initially driven. In addition, a constant normal voltage of 400 ~ 800[V] after lighting, and 3 ~ 6[ mA] is needed for a power circuit that can stabilize the current. Applying a high voltage causes a lot of stress on the inverter and generates a lot of heat in the cold cathode lamp, causing significant damage to the BLU (Back Light Unit), resulting in a burning phenomenon, which causes the screen to output normal colors when outputting the screen. We can not see the yellow output and the screen darkened. Therefore, in order to prevent such a symptom in advance, efficiency can be increased by using a Light Emitting Diode (LED) as the light source of the LCD display instead of a cold cathode fluorescent lamp (CCFL). As a result, it is shown that the LED method outperforms the CCFL method.