• Title/Summary/Keyword: LED Driving

Search Result 259, Processing Time 0.029 seconds

Design of Micro-Magnetic Energy Harvest Power Management Circuit for Emergency Lighting LED Driving in Underground Facility for Public Utilities (지하 공동구 비상조명 LED 구동용 초소형 자기 에너지 하베스트 전력관리 회로 설계)

  • Sim, Hye-Ryeong;Lee, Kyoung-Ho;Kim, Joung-Hyun;Han, Seok-Bung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.495-502
    • /
    • 2020
  • In this paper, a power management circuit was designed to drive the emergency lighting LED in the underground facility for public utilities using magnetic energy harvest. The magnetic energy harvest consists of a harvest elements and power management circuits. The proposed circuit was made of a rectifier, a battery charging circuit, and an LED driving circuit. In normal times, the battery is charged with the harvested power, and in the event of an emergency, the energy stored in the battery is used to drive the LED. As a result of the measurement, it took two minutes to charge the 47 mF capacitor. This is the amount of power that can drive an LED for emergency lighting for about three and a half minutes. Through this, it was confirmed that the power management circuit for magnetic energy harvest proposed in this paper can be used as an emergency lighting LED-driven power device in an underground facility for public utilities where it is difficult to draw separate power.

Development of LED TV Panel Brightness Uniformity Correction System (LED TV 패널 밝기 균일화 보정 시스템 개발)

  • Park, Je Sung;Lee, Won Woo;Jian, Zhangye;Joo, Hyonam;Kim, Joon Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • When Flat Panel Display (FPD) is made with backlight module, such as LED TV, it inherently suffers from the non-uniform backlight luminance problem that results in un-even brightness distribution throughout the TV screen. If the luminance of each pixel location of a TV screen as a function of the driving voltage can be measured, it can be used to compensate the non-uniformity of the backlight module. We use a carefully calibrated imaging system to take pictures of a TV screen at different levels of brightness and generate the compensation functions for the driving circuitry to correct the luminance level at each pixel location. Making use of the fact that the luminance of the screen is normally brightest at around the center of the screen and gradually decreases toward the border of the screen, the luminance of the whole TV screen is approximated by a mathematical function of the pixel locations. The parameters of the function are computed in the least square sense by the values of both the pixel luminance sent from the driving circuit and the grayscale value measured from the image taken by the imaging system. To justify the correction system, a simple second order polynomial function is used to approximate the luminance across the screen. When the driving circuit voltage is corrected according to the measured function, the variance of the screen luminance is reduced to one tenth of the one measured from the un-corrected TV screen.

The Method of Reducing the Output Electrolytic Capacitance in Single Stage PFC flyback Converter (Single stage PFC flyback 컨버터의 전해커패시터용량저감기법)

  • Kim, Jin-Gu;Park, Chong-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.81-88
    • /
    • 2015
  • LED has been great attentions in lighting industry because of its long life-time, high efficiency, excellent light output characteristics. However, the life-time of the LED driving system is decreased because of the electrolytic capacitor which is used in the power conversion system for driving LED lighting. Therefore the capacitance reduction methods have been studied to replace an electrolytic capacitor with film or tantalum capacitor. This paper presents the Single stage PFC flyback converter with the simplified third harmonic current injection circuit to reduce output capacitance and the proposed system is theoretically analyzed and verified through the experiment.

Introduction and Research Trends on Micro LED Technology (마이크로 LED 기술 소개 및 연구 동향)

  • Moojin Kim
    • Advanced Industrial SCIence
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2024
  • Currently, micro LEDs (Light Emitting Diode) are attracting attention in the lighting field along with next-generation displays and have advantages such as high luminance, operating speed, energy efficiency, and long-term driving. It is predicted to bring new innovations in smartphones, televisions, and wearable electronic devices. These micro displays are self-luminous displays that emit light by themselves by being implemented as pixels composed of micrometer-sized LED devices. The main manufacturing processes can be divided into crystal growth, patterning and etching, chip separation and transfer, bonding and wiring, panel assembly and encapsulation, inspection, and quality management. Recently, this technology has developed at a rapid pace, and companies are expanding their investments in these fields. According to recent market research results, the micro LED display market is expected to continue to grow, and the main development direction of development can be summarized as manufacturing process improvement, material innovation, and driving technology development. It is believed that commercialization will accelerate through these studies and lead to innovation in the display industry with high performance and various application possibilities.

Modular Current-Balancing circuit for Multi-channel LED driving (다중 채널 LED 구동을 위한 모듈형 전류 평형 회로)

  • Kim, Hyo-hun;Gu, Hyun-su;Han, Sang-kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.393-394
    • /
    • 2015
  • 본 논문은 다중 채널 LED(Light Emitting Diode) 구동을 위한 모듈형 전류 평형 회로를 제안한다. 기존 방식은 DC/DC 컨버터단과 다중 채널 LED 전류제어를 위해 각 채널마다 일정한 전류 제어를 하는 LED 드라이버단의 직렬 연결로 구성된다. 하지만 제안회로는 캐패시터의 전하평형원리에 의해 단일 채널 전류 제어로 모든 채널의 LED 전류를 동일하게 제어할 수 있어 DC/DC 컨버터와 LED 드라이버단을 하나로 통합한 단일 전력단 LED 구동회로 구성이 가능하며, 이는 회로구성의 단일화로 소자수 및 사이즈의 소형화가 가능하다. 또한 수동소자만으로 이루어진 모듈형 회로로써 모듈의 추가에 따라 요구되는 LED 채널 수 만큼 다채널 모듈로 확장할 수 있다. 제안회로의 타당성 검증을 위해 1kW급 LED 구동회로에 적용한 시뮬레이션 결과를 제시한다.

  • PDF

A Study on AC-Driven LED Lighting System with High Efficacy, and Heterogeneous power (고 효율, 이종 전원 지원 교류 구동 발광 다이오드 조명 연구 장치 개발)

  • Lim, Jun-hyung;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.555-558
    • /
    • 2017
  • In this paper, we designed a power supply AC LED driving device which can display uniform power consumption and light efficiency even when AC power of different size is applied. By setting input voltages and deviations of different sizes, it is confirmed that the electric light characteristics are the same at two input voltages. In addition, according to peak voltage of AC power, improper lighting caused in specific LED section is improved, and LED lighting of all sections is implemented in all commercial AC input voltage.

  • PDF

Development of 100[W] LED Flood Lighting with Tunable Colors and Color Temperatures (광색가변 및 색온도 제어용 100[W]급 투광기 개발)

  • Youn, Jin-Sik;Kim, Gi-Hoon;Song, Sang-Bin;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.1-9
    • /
    • 2008
  • This paper is about l00[W] discrete LED floodlight lighting system, light color and color temperature to be controlled using the 3[W] RGBA LED, is developed the product with optical, heat dissipation, circuit, luminaire and system design. The result, color temperature is changed corresponding to black body locus from 2,000[K] to 10,000[K] and The Color Rendering Index(C.R.I) is achieved from 71 to 91 by high C.RI. Driving voltage is $90{\sim}250[Vac]$, circuit efficiency is 87[%], P.F is more than 93. moreover the LED lens is designed to achieve narrow, middle, wide beam angle, heat dissipation design is executed to minimize variation of luminous output by the surroundings temperature and to ensure reliability.

Heat Radiation of Multichip 10W LED Light Using Thermoelectric Module(TEM) (열전소자를 이용한 10W급 멀티칩 LED조명의 방열)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.46-50
    • /
    • 2012
  • This paper amis at improving the heat radiation performance of thermoelectric module (TEM) for a commercialization of high-powered LED light with using a multichip LED module. In addition, a 10W multichip LED light was prepared for the heat performance on radiating of which LED light was made for a use of testing by the driving of the thermoelectric module. So, it was found that about 30% in the effect of temperature reduction was confirmed if compared with the radiation heat by heat sink only.

The Driving Circuit Design for the LED Traffic Signal Lamp (에너지 절약형 LED 신호등 구동회로 설계에 관한 연구)

  • Jeong, Hak-Geun;Jung, Bong-Men;Yu, Seung-Weon;Park, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3144-3146
    • /
    • 1999
  • $8{\sim}12$인치의 원형(또는 사각) PCB 기판에 수백 개의 고휘도 반도체 발광 다이오드(Light Emitting Diode. LED)와 구동 회로로 구성되는 LED 교통 신호등은 특정 파장대의 단색광을 발광하므로, 기존의 백열전구식 신호등에 비해 시인성이 좋고, 80 % 이상의 에너지 절약이 가능하다. 그러나 LED는 주위 온도에 따라 밝기가 변화하는 특성이 있다. 신호등은 기능상 외부 온도의 영향 없이 항상 일정한 광도를 유지해야 하므로, 본 논문에서는 외부 온도의 변화에 관계없이 일정한 광출력을 유지할 수 있는 LED 구동회로를 설계한다 이를 위해 정전압 및 정전류로 구동되는 LED의 온도에 따른 광출력 특성 실험이 수행되고, 이러한 데이터들을 바탕으로 정광출력 LED 신호등 구동회로가 설계되고 그 성능을 평가한다.

  • PDF

New LED Current Balancing Scheme Using C-Fed Z-Source Converter (전류형 Z-Source 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Hong, Daheon;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • In multi-string light-emitting diode (LED) driver system, current balancing is crucial because the brightness of LED is directly related to its forward current. This paper presents a novel LED current balancing topology using current-fed Z-source converter. With the proposed structure, currents flowing through two LED strings are automatically balanced owing to the charge-balance condition on capacitors. Operation of the proposed converter is simple and the proposed converter uses only one active switch and one diode. Moreover, low-side gate driving can be used to operate the active switch. To verify the operation of the proposed LED current balancing converter, a prototype is built and tested with different numbers of LEDs.