• Title/Summary/Keyword: LED Driver

Search Result 284, Processing Time 0.026 seconds

Performance Improvement of VLC System using LED Module (LED 모듈을 이용한 VLC(Visible Light Communication) 시스템의 성능향상 방안)

  • Cho, Hyun-Mook
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.742-746
    • /
    • 2018
  • In this paper, we implemented a VLC(Visible Light Communication) system capable of transmitting/receiving data on a 30MHz clock based on On/Off keying modulation/demodulation. The data rate of the implemented system can be verified by functional verification of VLC channel composed of LED/photodiode driver and VLC transmitting/receiving signal of Tx/Rx platform. But, In the experimental results with the VLC transmitting/receiving for combined module, the maximum transmission rate was measured at 15 MHz. Therefore, we describe the problems that can occur when implement the VLC system using the LED module with output power of 15W or more and propose ways to improve it.

200[W] Half-Bridge LLC Series Resonant Converter for driving LED Lamp (LED 조명장치 구동용 200[W]급 하프브리지 LLC 직렬공진형 컨버터)

  • Han, Woo-Yong;Park, Hyo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4483-4488
    • /
    • 2010
  • In comparison with some other light sources, LED has merits such as long lifetime, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED, which has been applied in display system only, has applied in the field of lighting system. Driving current of power LED has to be controlled below the designed value. In this paper, half-bridge LLC series resonant converter, which has the current limiting function, has been described. Half-bridge LLC series resonant converter allows in relatively wide input voltage and output load range when compared to the other resonant converter. Also, it is possible to reduce a magnetic component, because leakage inductance of transformer is used as a resonant inductance. It has been validated by designing and testing 200[W] half-bridge LLC converter of DC24[V] output voltage for LED lamp driver, which includes a current limiting function and power factor correction(PFC) function.

LED Board Optimization Design for User-Friendly System Configuration (사용자 친화적 시스템 구성을 위한 LED 보드 최적화 설계)

  • Ju-An Park;Chang-Woo Han;Hui-Sang Yoo;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.859-866
    • /
    • 2023
  • This paper focuses on configuring a user-friendly system of LED systems by applying improvement measures such as gamma correction, non-flicker, and driving noise removal using MCUs and LED drivers. As a result of the experiment, the 22kHz PWM mode of the LED driver generated noise outside the audible frequency range, making it practically imperceptible to users. The appropriate pull-up resistor values within the normal operating delay ratio of 5% were found to be 1kΩ to 10kΩ for the 3kHz PWM mode and 1kΩ to 2kΩ for the 22kHz PWM mode. In addition, gamma correction can be optimized for nonlinear human visual systems to express accurate contrast and as a result, it is expected to develop an LED system that can be expressed more naturally and accurately than conventional LED systems and improve users' visual experience.

Multi-Output LED Driver Integrated with 3-Switch Converter and Passive Current Balance for Portable Applications

  • Song, Sen;Ni, Kai;Chen, Guipeng;Hu, Yihua;Yu, Dongsheng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.58-67
    • /
    • 2019
  • This study presents a new portable eight-output light emitting diode (LED) driver. The eight output-channels are divided into two equal groups, and their output powers can be controlled individually by three active switches. In addition, a simple capacitor-based passive current balancing circuit (CBC) is employed in each port to guarantee that the currents of the four LEDs are the same. When compared with the conventionally used separate two-output isolated converters, the proposed one uses one less active switch. Moreover, zero-voltage-switching (ZVS) is achieved, which improves the power efficiency of the driver. Finally, a highly compact prototype is built, which can reach an efficiency of 94.6%.

Performance Investigation of Visible Light Communication Using Super Bright White LED and Fresnel Lens (조명용 고출력 백색 LED와 프레넬 렌즈를 이용한 가시광 통신 성능연구)

  • Kim, Min-Soo;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • White light-emitting diode (WLED) is growing interest in using both illumination and communications. This paper reports visible light communication (VLC) composed of a super bright white light-emitting diode, low cost commercial photo-diode and a Fresnel lens. LED driver is consisted of the power MOSFET and MOSFET driver that switches the LED on and off. The modulation bandwidth of the LED used was determined to be 8 MHz. However, it was possible to communicate up to 1 Mbps under illumination of 500 lx because of the weak signal power and a low spectral sensitivity of the SHF213 as a PIN photodiode. In order to enhance the system bandwidth, the LED light was focused on the PIN photodiode by use of the Fresnel lens. As a result of that, visible light link was operated up to modulation bandwidth of the LED. The signal to noise ratio can be improved by 40 dB using an optical concentration at the receiver.

Study of a LED Driver for Extension of Color Gamut (색 영역의 확장을 위한 LED 구동회로에 대한 연구)

  • Shin, Dong-Seok;Park, Chan-Soo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.760-769
    • /
    • 2016
  • This paper proposes a hybrid LED driving circuit and its control method for extension of the color gamut of LED. The proposed hybrid LED driving circuit provides the constant current by switching regulation in the high current and by linear regulation in the low current through LED. Furthermore, the magnitudes of the high current and low current were controlled by CC(Continuous Current) control method and PWM(Pulse Width Modulation) control method, respectively. We experimentally confirmed that the current through RGB LED is linearly controlled to 2% maximum current ratio by varying PWM in the proposed driving circuit and control method. As a result of the measurement of the output light color in CIE1976 chromaticity coordinates, we confirmed that the color, which not be expressed by the existing method, uniformly expressed. We confirmed that the color, which can not be expressed by the existing method, was uniformly output and verified that the color gamut was expanded by the low current controlled by the proposed driving circuit and control method.

A Dual-Output Integrated LLC Resonant Controller and LED Driver IC with PLL-Based Automatic Duty Control

  • Kim, HongJin;Kim, SoYoung;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.886-894
    • /
    • 2012
  • This paper presents a secondary-side, dual-mode feedback LLC resonant controller IC with dynamic PWM dimming for LED backlight units. In order to reduce the cost, master and slave outputs can be generated simultaneously with a single LLC resonant core based on dual-mode feedback topologies. Pulse Frequency Modulation (PFM) and Pulse Width Modulation (PWM) schemes are used for the master stage and slave stage, respectively. In order to guarantee the correct dual feedback operation, Phased-Locked Loop (PLL)-based automatic duty control circuit is proposed in this paper. The chip is fabricated using $0.35{\mu}m$ Bipolar-CMOS-DMOS (BCD) technology, and the die size is $2.5mm{\times}2.5mm$. The frequency of the gate driver (GDA/GDB) in the clock generator ranges from 50 to 425 kHz. The current consumption of the LLC resonant controller IC is 40 mA for a 100 kHz operation frequency using a 15 V supply. The duty ratio of the slave stage can be controlled from 40% to 60% independent of the frequency of the master stage.

LED Driver Circuit using Distributed Power Conversion (분산형 전력변환을 이용한 LED 구동 회로)

  • Kim, Sang-Eon;Roh, Chung-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.333-334
    • /
    • 2012
  • 본 논문은 LED 구동회로에서 DC/DC 컨버터회로를 분산하여 저발열, 부피저감이 가능한 새로운 구조의 LED 구동회로를 제안한다. 제안된 회로의 특징은 기존 벅컨버터에서 발열이 높고 부피가 큰 부품들을 제거하여 발열을 낮추고 부피를 줄이는 효과가 있다. 또한 전력을 분산시킴으로써 기존회로보다 소자의 전압, 전류스트레스가 감소한다. 제안한 회로를 검증하기 위해 이론적 분석결과를 통해 타당성을 검토하였고 전장용 LED 구동회로에 적용하여 실험을 통해 우수성을 검증하였다.

  • PDF

A Low-Cost Digital PWM-Controlled LED Driver with PFC and Low Light Flicker

  • Li, Yi;Lim, Jae-Woo;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2334-2342
    • /
    • 2015
  • This paper proposes an LED driving circuit with a digital controller, power factor correct (PFC) function, and low light flicker. The key topology of the proposed circuit is a conventional Flyback combined with a pre-stage. As a result, there will be less light flicker than with other one-stage PFC circuits. A digital controller, implemented using a low-cost microcontroller, dsPIC30F2020, will meet PFC and low light flicker. The experimental results validate the functionality of the proposed circuit.

New X-Y Channel Driving Method for LED Backlight System in LCD TVs

  • Cho, Dae-Youn;Oh, Won-Sik;Cho, Kyu-Min;Moon, Gun-Woo;Yang, Byung-Choon;Jang, Tae-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1001-1004
    • /
    • 2007
  • This paper proposes a novel RGB-LED (light emitting diode) backlight system, for 32" LCD TVs, accompanied by a new X-Y Channel driving method in which its row and column switches control the individual division screen. This proposed driving method is able to produce division driving effects such as image improvement and reduced power consumption. Not only that, the number of driver needed in this method, that is 3 power supplies with 3*(m+n) switches, is much fewer than that of cluster driving method, that is 3*(m*n) driver.

  • PDF