• Title/Summary/Keyword: LDP, Local directional pattern

Search Result 11, Processing Time 0.034 seconds

A Study of Evaluation System for Facial Expression Recognition based on LDP (LDP 기반의 얼굴 표정 인식 평가 시스템의 설계 및 구현)

  • Lee, Tae Hwan;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.23-28
    • /
    • 2014
  • This study proposes the design and implementation of the system for a facial expression recognition system. LDP(Local Directional Pattern) feature computes the edge response in a different direction from a pixel with the relationship of neighbor pixels. It is necessary to be estimated that LDP code can represent facial features correctly under various conditions. In this respect, we build the system of facial expression recognition to test LDP performance quickly and the proposed evaluation system consists of six components. we experiment the recognition rate with local micro patterns (LDP, Gabor, LBP) in the proposed evaluation system.

A Study of Improving LDP Code Using Edge Directional Information (에지 방향 정보를 이용한 LDP 코드 개선에 관한 연구)

  • Lee, Tae Hwan;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.86-92
    • /
    • 2015
  • This study proposes new LDP code to improve facial expression recognition rate by including local directional number(LDN), edge magnitudes and differences of neighborhood edge intensity. LDP is less sensitive on the change of intensity and stronger about noise than LBP. But LDP is difficult to express the smooth area without changing of intensity and if background image has the similar pattern with a face, the facial expression recognition rate of LDP is low. Therefore, we make the LDP code has the local directional number and the edge strength and experiment the facial expression recognition rate of changed LDP code.

Texture Classification Using Rotation Invariant Local Directional Pattern (Rotation Invariant Local Directional Pattern을 이용한 텍스처 분류 방법)

  • Lee, Tae Hwan;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2017
  • Accurate encoding of local patterns is a very important factor in texture classification. However, LBP based methods w idely studied have fundamental problems that are vulnerable to noise. Recently, LDP method using edge response and dire ction information was proposed in facial expression recognition. LDP is more robust to noise than LBP and can accommod ate more information in it's pattern code, but it has drawbacks that it is sensitive to rotation transforms that are critical to texture classification. In this paper, we propose a new local pattern coding method called Rotation Invariant Local Direc tional Pattern, which combines rotation-invariant transform to LDP. To prove the texture classification performance of the proposed method in this paper, texture classification was performed on the widely used UIUC and CUReT datasets. As a result, the proposed RILDP method showed better performance than the existing methods.

A study on local facial features using LDP (LDP를 이용한 지역적 얼굴 특징 표현 방법에 관한 연구)

  • Cho, Young Tak;Jung, Woong Kyung;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.49-56
    • /
    • 2014
  • In this paper, we proposed a method for representing local facial features based on LDP (Local Directional Pattern). To represent both PFF (Permanent Facial Features) and TFF (Transient Facial Features) effectively, the proposed method configure local facial feature vectors based on overlapped blocks for each facial feature in the forms of various size and shape. There are three advantages - it take advantages of geometric feature based method; it shows robustness about detection error using movement characteristics of each facial feature; and it shows reduced sampling error because maintain spatial information caused by block size variability. Proposed method shows better classification accuracy and reduced amount of calculation than existing methods.

A Study on Local Micro Pattern for Facial Expression Recognition (얼굴 표정 인식을 위한 지역 미세 패턴 기술에 관한 연구)

  • Jung, Woong Kyung;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • This study proposed LDP (Local Directional Pattern) as a new local micro pattern for facial expression recognition to solve noise sensitive problem of LBP (Local Binary Pattern). The proposed method extracts 8-directional components using $m{\times}m$ mask to solve LBP's problem and choose biggest k components, each chosen component marked with 1 as a bit, otherwise 0. Finally, generates a pattern code with bit sequence as 8-directional components. The result shows better performance of rotation and noise adaptation. Also, a new local facial feature can be developed to present both PFF (permanent Facial Feature) and TFF (Transient Facial Feature) based on the proposed method.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

A Study on LDP Code Design to includes Facial Color Information (얼굴색 정보를 포함하기 위한 LDP 코드 설계에 관한 연구)

  • Jung, Woong Kyung;Lee, Tae Hwan;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.9-15
    • /
    • 2014
  • In this paper, we proposed a new LDP code to solve a previous LDP code's problem and can include a face-color information. To include the face-color information, we developed various methods reducing the existing LDP code and analyzed the results. A new LDP code is represented by 6-bits different from the previous LDP code To adapt to a noise and environmental changes effectively and include 2-bits face-color information. The result shows better recognition rates of face and facial-expression than the existing methods effectively.

Face Recognition using Modified Local Directional Pattern Image (Modified Local Directional Pattern 영상을 이용한 얼굴인식)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.205-208
    • /
    • 2013
  • Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.

Video Shot Boundary Detection based on Enhanced Local Directional Pattern(eLDP) for Set-top Box Quality Control (셋톱박스 품질검사를 위한 개선된 지역 방향 패턴(eLDP) 기반의 비디오 샷 경계 검출)

  • Cho, Youngtak;Ahn, Kiok;Kim, Mingi;Lee, Taewon;Song, Gihun;Chae, Oksam
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.957-960
    • /
    • 2017
  • 디지털 비디오의 발전이 가속됨에 따라, 비디오 샷 경계 검출은 비디오 분석 및 카타로깅 등 여러 분야에 있어 필수적인 요소가 되었다. 기존 샷 경계 검출 방법들은 잠음이나 카메라 혹은 물체의 이동, 그리고 색상의 급격한 변화 등에 민감한 성능을 보인다. 본 논문에서는 개선된 지역 방향 패턴 기반(eLDP) 검출 방법을 제안한다. 제안하는 방법은 RGB 색상의 일부와 eLDP의 특징을 결합해 더욱 강인한 샷 경계 검출 성능을 보였다. 또한, 셋톱박스 품질검사 시 필요한 채널 간 동기화의 신뢰성을 높였고, 실시간으로 검사하면서도 안정적인 샷 경계 검출이 가능함을 입증하였다.

Robust Facial Expression Recognition Based on Signed Local Directional Pattern (Signed Local Directional Pattern을 이용한 강력한 얼굴 표정인식)

  • Ryu, Byungyong;Kim, Jaemyun;Ahn, Kiok;Song, Gihun;Chae, Oksam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.89-101
    • /
    • 2014
  • In this paper, we proposed a new local micro pattern, Signed Local Directional Pattern(SLDP). SLDP uses information of edges to represent the face's texture. This can produce a more discriminating and efficient code than other state-of-the-art methods. Each micro pattern of SLDP is encoded by sign and its major directions in which maximum edge responses exist-which allows it to distinguish among similar edge patterns that have different intensity transitions. In this paper, we divide the face image into several regions, each of which is used to calculate the distributions of the SLDP codes. Each distribution represents features of the region and these features are concatenated into a feature vector. We carried out facial expression recognition with feature vectors and SVM(Support Vector Machine) on Cohn-Kanade and JAFFE databases. SLDP shows better classification accuracy than other existing methods.