• Title/Summary/Keyword: LDH isozyme

Search Result 56, Processing Time 0.029 seconds

Comparison of LDH isozymes in several vertebrates (수종척추동물의 LDH isozyme에 대한 비교생화학적 연구)

  • 임중기
    • YAKHAK HOEJI
    • /
    • v.16 no.1
    • /
    • pp.34-46
    • /
    • 1972
  • Lactate dehydrogenase isozymes in heart, kidney, liver and skeletal muscle of 15 species of vertebrate animals belonging to 5 classes were separated by cellulose acetate electrophoresis and the levels of them were measured and compared with each other. Lactate dehydrogenase isozyme patterns were different from each other among animal species and among tissues. The activity of LDH$_{5}$ was superior in anaerobic tissues such as liver and skeletal muscle, and the activity of LDH$_{1}$ was superior in aerobic tissues such as heart and kidney. The level of LDH of vertebrate animals of the 5 classes has found approximatry increasing in the following order: Pisces>Amphibia>Reptelia

  • PDF

Effects of Sulfur Dioxide on Lactic Dehydrogenase-Isozyme (아황산(亞黃酸)가스가 백서조직(白鼠組織)의 Lactic Dehydrogenase-Isozyme에 미치는 영향(影響))

  • Chung, Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.3 no.1
    • /
    • pp.111-119
    • /
    • 1970
  • Alterations of H-and M-isozymes of Lactic Dehydrogenase(LDH) were observed in the various tissues after exposing the rats to 50ppm and 250ppm of sulfur dioxide. These isozymes of the respective tissue were separated by Diethlaminoethyl (DTAE)-cellulose from the tissue homogenates of brain, lung and muscle, presenting the activities by rate of reduction of nicotinamide-adenine-dinucleotide ($NAD^+$). Pure LDH and the coenzyme ($NAD^+$) were directly treated with sulfur dioxide in vitro in order to find out the direct to sulfur dioxide on LDH and $NAD^+$ and the results were as follows. 1. In the normal tissues, the H-isozyme activity was dominant in the brain and heart, and the M-isozyme in the muscle. 2. In the lung tissue of normal rats, there was no difference between the activity of H-and M-type of LDH. 3. When rats inhale sulfur dioxide gas in concentration of 50ppm and 250ppm, it appeared that the H-type tend to be suppressed in aerobic tissues and the M-type in anaerobic tissues. 4. In the lung tissue exposed to sulfur dioxide, both the LDH activities were suppressed. 5. It seems that LDH and the coenzyme ($NAD^+$) are not directly affected by exposing in sulfur dioxide gas.

  • PDF

Immunological Comparison of the Reptilian $M_4$-LDH Isozyme (파충류 $M_4$형 젖산 수소이탈효소의 면역학적 연구)

  • Park, Sang-Yoon;Cho, Dong-Hyun;Kim, Sang-Yeop
    • The Korean Journal of Zoology
    • /
    • v.19 no.2
    • /
    • pp.79-84
    • /
    • 1976
  • $M_4$-LDH isozyme was partially purified from the skeletal muscle of Agkistrodon blomhoffii brevicaudus. The protein was injected into rabbits and the resulting antiserum was tested for reactivity with crude preparations of LDH isozymes of fifteen vertebrate species. Antisera against $M_4$-LDH isozyme of A. blomhoffii brevicaudus reacted very strongly with the LDH isozymes, except the $H_4$-LDH isozyme, of A. saxatilis and A. caliginosus but weakly with those of Rhabdophis tigrinus at fixed conditions. A. caliginosus showed a difference in the immunodiffusion test and was considered to be a species less related to others of genus Agkisrodon. The suggestion that the H and M lactate dehydrogenase subunits are immunclogically distinct has been reaffirmed in the present study.

  • PDF

Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State (기아상태에서 Ldh-C가 발현된 어류 조직의 젖산탈수소효소의 대사)

  • Yum, Jung Joo;Kim, Gyu Dong
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.155-163
    • /
    • 2016
  • Metabolism of lactate dehydrogenase (EC 1.1.1.27, LDH) was studied to identify the function of LDH-C. Tissues of LDH liver-specific Ldh-C expressed Carassius auratus and eye-specific Ldh-C expressed Lepomis macrochirus after starvation were studied. LDH activity in liver tissue from C. auratus was increased after starvation. And LDH specific activity (units/mg) and LDH/CS were increased in tissues. It means the anaerobic metabolism was taking place in C. auratus after starvation. LDH B4 isozyme was decreased in skeletal muscle and increased in heart tissue. LDH C4 isozymes those showed in eye and brain tissues were identified as liver-specific C4 isozymes and disappeared after starvation. And C hybrid in eye, A4 isozyme in brain, and both C hybrid and C4 isozyme in liver tissue were increased, respectively. In L. macrochirus, the level of variation of LDH activities was low but greatly increased especially in eye tissue and LDH A4 and AC hybrid were increased in brain tissue. The LDH activities in tissues from C. auratus and L. macrochirus remained 30.30-18.64% and 25-18.75%, respectively, as a result of the inhibition by 10 mM of pyruvate. The KmPYR values of LDH in C. auratus were increased. As a result, LDH liver-specific C4 isozyme was expressed in liver, brain and eye tissues during starvation. It seems metabolism of lactate was predominant in brain tissue. After starvation, the liver-specific LDH-C was affected more than eye-specific LDH-C.

The effect of blood lactate concentration and blood $LDH_5$ Isozyme on type of different recovery after maximal exercise (최대운동후 스포츠 마사지 운동성 회복 안정성 회복간에 젖산의 축적&혈중 $LDH_5$ Isozyme 변화의 비교분석)

  • Kim, Yong-Nam;Ru, Jea-Mon
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.4
    • /
    • pp.5-10
    • /
    • 2004
  • This study selected 10 university football male players and repeatedly treated them as sports massage group, exercise resumption group, and stability resumption. After maximum exercise, when sport massage, exercise resumption, and stability resumption were applied during recovery, blood lactic acid concentration and $LDH_5$ isozyme concentration were examined. Finally this study obtains the following conclusion 1. There was a significant difference in both lactic acid concentration and time between groups. Besides, the cross-action on group and time was significant. 2. There was a significant difference in both $LDH_5$ concentration and time between groups. Besides, the cross-action on group and time was significant. Based on the above findings, this study suggests that sport massage resumption and exercise resumption remove blood lactic acid more quickly than stability resumption to promote recovery. That means that sport massage and exercise resumption anre very effective for lowering the level of fatigue. Thus sport massage or exercise resumption treatment is considered to have a very positive effect on player's quick recovery and it should be used aggressively in a field.

  • PDF

A study on the isozyme alterations of lactic dehydrogenase in the tissues of albino rat by the exposure in sulfur dioxide (아황산가스에 노출된 백서조직 lactic dehydrogenase의 isozyme변화에 관한 연구)

  • 권숙표
    • YAKHAK HOEJI
    • /
    • v.13 no.4
    • /
    • pp.101-110
    • /
    • 1969
  • The isozyme alteration of lactic dehydrogenase in the tissues of albino rat inhaled SO$_{2}$ were studied in vivo and in vitro, with the following results: (1) The H-type of LDH activity relatively dominated in the normal brain, heart and kidney tissues of rat, M-type in the normal lung, liver, and muscle tissues of the animal. (2) When rats inhale SO$_{2}$ in the concentration of 250 ppm, it appears that the M-type tends to predominate in the anaerobic tissues such as liver, kidney and muscle tissues and the H-type in the aerobic tissues such as brain and heart tissues. (3) When 5% SO$_{2}$ is introduced into tissue homogenates, LDH activities in the heart, lung, liver and muscle tissues are increased more than that of introducing room-air only. With sam treatment, LDH activity is decreased in the kidney tissue and no alteration is observed in the brain tissue. (4) Although, after the aeration of SO$_{2}$, the oxygen tension seems to bring decreases in the level of LDH activity in the anerobic tissues such as liver and muscle tissues, while, on the other hand, increases in the level of the activity in the aerobic tissues, such as the brain, heart and lung tissues. (5) Accordinglly, SO$_{2}$ affects LDH activities, its isozyme pattern of each organs, and their metabolic pathway by its absorption of the gas.

  • PDF

Comparision of the Activity and Characteristics of Lactate Dehydrogenase Isolated from Different Parts of Soybean Seedling (발아초기의 콩 부위별 Lactate Dehydrogenase 활성변화 및 효소성질 비교)

  • Lee, Hyo-Sa;Jun, Tae-Hong
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 1983
  • The change of lactate dehydrogenase(LDH) activity and the possibility of the existence of LDH. isozyme were examined with different parts of soybean sprout. The enzyme activity was little changed in cotyledons throughout the early stagy of germination. However, hypocotyls and roots showed the continuous decline of the enzyme activity since the radicle emerged from seeds. It was found that LDH from hypocotyls. and roots was unstable as compared with LDH from cotyledons, even at low temperature. The enzyme from hypocotyls and roots was not purified with a good yield when the purification procedure developed for LDH from cotyledons. was employed. LDH from hypocotyls and roots has the Rm value of 0.29, and 0.25 from cotyledons. The apparent Km value for LDH from cotyledons was 0.45mM with sodium pyruvate, while crude homogenate of hypocotyls or roots showed biphasic phenomenon with two Km values 0.014 and 0.45mM. The results indicate the possibility that crude homogenate of hypocotyls or roots may contain a different LDH isozyme from the LDH of soybean reported previously.

  • PDF

Changes of LDH Subunit Combinations Induced by Tetrodotoxin (Tetrodotoxin에 의하여 유발되는 LDH 하부단위체 조합의 변화)

  • Kim, Sang-Yeop;Yum, Jung-Joo
    • The Korean Journal of Zoology
    • /
    • v.28 no.4
    • /
    • pp.227-236
    • /
    • 1985
  • In an attempt to make a scrutiny into a mechanism for the formation of quaternary structure of LDH isozymes, male mice were intraperitoneally exposed to a wide range of tetrodotoxin concentration and the changes in relative percentage of the five isozymes were monitored by electrophoresis and subsequent densitometry. The observations that a conspicuous increase of the $H_4$ isozyme was demonstrated in nearly all brain tissues, that the $M_4$ isozyme of skeletal muscle tissue was slightly increased while the $M_3H$ and $M_2H_2$ isozymes were decreased, that the M/H ratio was strikingly reduced in heart tissue and that assembly of $H_4$ isozyme was revealed in liver tissue although its rate was extremely low suggest that new intracellular ionic environment established by compulsory change in Donnan equilibrium could alter the LDH isozyme distribution. The reduction of assembly of $M_3H$ isozyme found in mouse tissues exposed to tetrodotoxin also seems to suggest that the subunit combination of 3M+H is very unfavorable in an intracellular environment deviated from its accustomed one. It was reaffirmed that there might occur TTX-insensitive sodium channels in plasma membrane.

  • PDF

Heterogeneity of Lactate Dehyrogenase Isozymes in tissues of Lampetra japonica (칠성장어(Lampetra japonica) 조직내 젖산수소이탈효소 동위효소들의 이질성)

  • 조성규;염정주
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.319-328
    • /
    • 1993
  • All vertebrates other than lampreys exhibit multiple loci encoding lactate dehydrogenase (EC 1.1.1.27,LDH). From the result shown by cellulose acetate and starch gel electrophoresis, the lampreys were-reported to have only one isozyme. However in our results the LDH of skeletal muscle, heart and kidney in Lampetra japonica were separated into three isozymes and that of liver was separated into two isozymes by polyacrylamide gel electrophoresis. The LDH of skeletal muscle and heart were separated into four isozymes and that of liver was separated into two isozymes by polyacrylamide gel isoelectric focusing (PAGlEF). The LDH of skeletal muscle were separated into four isozymes through the chromatofocusing. The molecular weight of LDH isozymes in skeletal muscle was approximately estimated to be 140,000 by Sephadex G-200 gel filtration. The LDH isozymes of skeletal muscle, heart and liver were inhibited by pyruvate to the nearly similar degree. And the degree of inhibition by pyruvate showed the value between LDH A$_4$and LDH B$_4$isozyme. And the LDH isozymes in heart, liver and skeletal muscle were thermostable. The results mentioned above indicate that the LDH isozyme in lamprey (Lampetra japonica) has not one isozyme but isozymes. And it is also found out that the two structures of their subunits are similar each others.

  • PDF

Effects of Resistance Training on Skeletal Muscle GLUT-4 Protein and LDH Isozyme Expression in Rats (저항성훈련이 흰쥐 골격근의 GLUT-4 단백질 및 LDH 동위효소 발현에 미치는 영향)

  • Kim, Yeon-Hee;Lee, Sang-Hak;Kim, Jong-Oh;Seo, Tae-Beom;Kim, Young-Pyo;Back, Kyoung-A;Yoon, Jin-Hwan
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1532-1540
    • /
    • 2011
  • The purpose of the present study was to investigate the effect of climbing resistance training on GLUT-4 protein and LDH isozyme activities of the soleus and gastrocnemius muscles in rats. Each experimental group was randomly divided into a control group (n=6) and a resistance exercise (n=6) group. Sprague-Dawley rats were made to climb a 180 cm tower for 12 wk. Weight changes in the resistance exercise group were significantly higher than in the control group (p<0.05). GLUT-4 protein expression of the soleus and gastrocnemius muscles was significantly higher (p<0.05) in the resistance exercise group than in the control group. There was no difference in soleus tissue LDHA4 isozyme activity between the groups. In the case of other LDH isozyme, when compared with the control group, the resistance exercise group showed a significantly higher activity (p<0.05). LDHA4 activity of gastrocnemius muscle tissue was not different between the groups. However, the activity of the resistance exercise group of all the other LDH isozymes was significantly higher than that of the control group (p<0.05). In summary, based on the results of this study, over 12 weeks of resistance training, the total body weight of the rats was reduced and the GLUT-4 activity in the gastrocnemius and soleus muscles was increased. In addition, except for LDH A4 all of the other LDH isozymes activities were increased. These results suggest that climbing resistance training affects the balance of body composition, increases LDH B-type isoenzymes and glucose metabolism capacity, and improves mitochondrial function.