The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.
중규모 기상 모델을 이용하여 안개와 같은 미세규모 국지현상을 정확히 재현하는 것은 매우 어려운 실정이다. 특히, 수치모델의 초기 입력 자료의 불확도는 수치모델의 예측 정확도에 결정적인 영향을 미치기 때문에 이를 보완하기 위한 자료동화 과정이 요구되어진다. 본 연구에서는 WRF (Weather Research and Forecasting) 모델을 이용하여 낙동강 지역에서 발생한 여름철 안개사례 재현실험을 대상으로 중규모 기상 모델의 한계를 검증하였다. 중규모 기상 모델에서 초기 및 경계장으로 사용되는 KLAPS (Korea Local Analysis and Prediction System)와 LDAPS (Local Data Assimilation and Prediction System) 분석장 자료를 이용하여 수치모델 모의 정확도 민감도 분석을 수행하였다. 또한 AWS (Automatic Weather System) 자료를 이용한 자료동화(Four-Dimensional Data Assimilation)에 의한 수치모델의 정확도 개선 정도를 평가하였다. 초기 및 경계장 민감도 분석 결과에서 LDAPS 자료를 입력 자료로 사용한 경우가 KLAPS 자료 보다 기온과 이슬점온도, 상대습도에서 높은 정확도를 보였고, 풍속은 더 낮은 수준을 나타내었다. 특히, 상대습도에서 LDAPS의 경우는 RMSE (Root Mean Square Error)가 15.9%, KLAPS는 35.6%의 수준을 보여 그 차이가 매우 크게 나타났다. 또한 자료동화를 통하여 기온, 풍속, 상대습도의 RMSE가 각각 $0.3^{\circ}C$, $0.2ms^{-1}$, 2.2% 수준으로 개선되었다.
This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).
기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.
본 연구는 전산유체역학(computational fluid dynamics, CFD) 모델을 이용하여 도시 지역에서 수목이 PM2.5 저감에 미치는 영향을 조사하였다. 현실적인 수치 모의를 위해, 기상청에서 현업으로 운영 중인 국지예보시스템(LDAPS)이 예측한 기상 자료를 CFD 모델의 초기·경계 자료로 사용하였다. CFD 모델 성능 검증은 연구 대상지 내에 구축된 6개의 센서에서 측정한 PM2.5 농도를 이용하였다. 본 연구에서는 수목이 PM2.5 농도 분포에 미치는 영향을 분석하기 위하여, 수목이 식재 되지 않았다고 가정한 경우, 수목이 식재되어 있지만 바람에 대한 항력 효과만 존재한다고 가정한 경우, 수목의 항력 효과와 침적 효과가 모두 존재한다고 가정한 경우에 대한 수치 실험을 수행하였다. 분석대상 기간 동안 PM2.5 저감 효과가 뚜렷하게 나타난 세 가지 영역 중 군부대 내의 PM2.5 평균 농도를 비교한 결과, 수목이 식재되지 않은 경우는 12.8 ㎍ m-3, 수목의 항력 효과만 고려한 경우는 12.5 ㎍ m-3이 나타났고, 수목의 항력 효과와 침적 효과가 모두 고려한 경우는 6.8 ㎍ m-3가 나타났다. 수목에 의한 건성 침적이 PM2.5 농도를 감소시키는 효과가 있는 것으로 확인되었다.
최근 드론 등의 무인비행체에 대한 관심과 활용이 높아지고 있다. 본 연구에서는 고도 150 m 이하 초저고도의 정확한 바람예측 정보를 제공하기 위해, 물리과정 모수화와 초기조건에 따른 민감도를 평가하여 최적의 물리과정 및 초기조건을 선정하고자 하였다. 이를 위해 GFS 및 LDAPS 자료를 초기 및 경계조건으로 사용하였고, YSU, RUC, ACM2 등의 대기경계층 모수화 방안과 Noah, RUC, Pleim 등의 지면모델을 조합한 7개의 실험을 구축하여, 2018년 4월의 1개월에 대해 수행하였다. 그 결과 GFS 초기자료를 사용한 RUC-YSU 물리과정 조합이 가장 우수한 성능을 나타냈다. 본 연구는 다양한 물리과정의 조합과 초기 및 경계자료를 사용한 실험을 통해 초저고도 바람예측을 위한 최적 모델링 방안을 설정한 것에 의의가 있을 것이라 판단된다.
Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).
The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.
A new physical/statistical diagnostic downscale model has been developed for use to improve near-surface air temperature forecasts. The model includes a series of physical and statistical correction methods that account for un-resolved topographic and land-use effects as well as statistical bias errors in a low-resolution atmospheric model. Operational temperature forecasts of the Local Data Assimilation and Prediction System (LDAPS) were downscaled at 100 m resolution for three months, which were used to validate the model's physical and statistical correction methods and to compare its performance with the forecasts of the Korea Meteorological Administration Post-processing (KMAP) system. The validation results showed positive impacts of the un-resolved topographic and urban effects (topographic height correction, valley cold air pool effect, mountain internal boundary layer formation effect, urban land-use effect) in complex terrain areas. In addition, the statistical bias correction of the LDAPS model were efficient in reducing forecast errors of the near-surface temperatures. The new high-resolution downscale model showed better agreement against Korean 584 meteorological monitoring stations than the KMAP, supporting the importance of the new physical and statistical correction methods. The new physical/statistical diagnostic downscale model can be a useful tool in improving near-surface temperature forecasts and diagnostics over complex terrain areas.
증발산은 토양으로부터 발생하는 증발과 식물의 잎에서 발생하는 증산을 통칭하는 것으로, 물 수지, 가뭄, 작물생장, 기후변화 등의 모니터링에 있어 중요한 요소이다. 실제증발산은 식생 지표면의 물 소비량 또는 물 필요량이며 기준증발산에 작물계수를 곱하여 구하므로, 농지의 실제증발산을 구하기 위해서는 기준증발산의 계산이 정확히 이루어져야 한다. 격자형 기준증발산을 합리적으로 산출하기 위하여 그동안 많은 노력들이 있었고 복수의 산출물이 제공되고 있다. 이에 본 연구에서는 FAO56-PM, LDAPS, PKNU-NMSC, MODIS 기준증발산 산출물을 비교평가 함으로써, 우리나라처럼 복합적이고 이질적인 지표면에서 국지적 규모의 수문 및 농업 분야에 활용하기 위하여 어떤 기준증발산 산출 방법이 적합한지 살펴보고자 한다. 2016~2019년 3~11월의 1일 단위 자료와 8일 합성 자료를 기상청 현장관측치와 비교하여 지점별, 연도별, 월별로 분석하고 시계열변화를 검토한 결과, 기계학습을 통해 우리나라 농지에 대한 지역최적화가 상당히 잘 수행된 PKNU-NMSC 자료의 정확도가 월등히 높게 나타났으며, 시간과 장소에 상관없이 안정적인 산출이 이루어졌음을 확인하였다. 또한 본연구에서는 FAO56-PM, LDAPS, MODIS 산출물에 내재한 정확도 특성을 제시하였으며, 이는 기준증발산 자료 사용에 있어 중요한 정보가 될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.