• 제목/요약/키워드: LDAPS

검색결과 59건 처리시간 0.021초

복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선 (Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas)

  • 금왕호;이상현;이두일;이상삼;김연희
    • 대기
    • /
    • 제31권1호
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

중규모 기상 모델을 이용한 안개 사례의 초기장 및 자료동화 민감도 분석 (The Sensitivity Analyses of Initial Condition and Data Assimilation for a Fog Event using the Mesoscale Meteorological Model)

  • 강미선;임윤규;조창범;김규랑;박준상;김백조
    • 한국지구과학회지
    • /
    • 제36권6호
    • /
    • pp.567-579
    • /
    • 2015
  • 중규모 기상 모델을 이용하여 안개와 같은 미세규모 국지현상을 정확히 재현하는 것은 매우 어려운 실정이다. 특히, 수치모델의 초기 입력 자료의 불확도는 수치모델의 예측 정확도에 결정적인 영향을 미치기 때문에 이를 보완하기 위한 자료동화 과정이 요구되어진다. 본 연구에서는 WRF (Weather Research and Forecasting) 모델을 이용하여 낙동강 지역에서 발생한 여름철 안개사례 재현실험을 대상으로 중규모 기상 모델의 한계를 검증하였다. 중규모 기상 모델에서 초기 및 경계장으로 사용되는 KLAPS (Korea Local Analysis and Prediction System)와 LDAPS (Local Data Assimilation and Prediction System) 분석장 자료를 이용하여 수치모델 모의 정확도 민감도 분석을 수행하였다. 또한 AWS (Automatic Weather System) 자료를 이용한 자료동화(Four-Dimensional Data Assimilation)에 의한 수치모델의 정확도 개선 정도를 평가하였다. 초기 및 경계장 민감도 분석 결과에서 LDAPS 자료를 입력 자료로 사용한 경우가 KLAPS 자료 보다 기온과 이슬점온도, 상대습도에서 높은 정확도를 보였고, 풍속은 더 낮은 수준을 나타내었다. 특히, 상대습도에서 LDAPS의 경우는 RMSE (Root Mean Square Error)가 15.9%, KLAPS는 35.6%의 수준을 보여 그 차이가 매우 크게 나타났다. 또한 자료동화를 통하여 기온, 풍속, 상대습도의 RMSE가 각각 $0.3^{\circ}C$, $0.2ms^{-1}$, 2.2% 수준으로 개선되었다.

한반도 호우유형의 중규모 특성 및 예보 가이던스 (Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula)

  • 김선영;송환진;이혜숙
    • 대기
    • /
    • 제29권4호
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

강우 및 홍수 예측을 위한 수치예보자료의 적용 및 정확도 개선 (Application and Accuracy Improvement of Numerical Weather Prediction Data for Rainfall and Flood Forecasting)

  • 문혜진;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.10-10
    • /
    • 2018
  • 기후변화로 인한 집중호우의 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 피해가 발생하고 있다. 본 연구에서는 이러한 침수 피해를 저감하기 위해 수치예보자료를 활용한 홍수 예 경보시스템의 적용성을 비교 평가하였다. 수치예보자료는 국내 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-scale Model ; MSM)을 이용하였으며, 남강댐 유역 내의 산청 유역에 대해 태풍 및 정체 전선 등 3 개의 강우사상을 선정하였다. 강우유출 해석에는 분포형 수문 모형인 KWMSS(Kinematic Wave Method for Subsurface and Surface)를 이용하였다. 그 결과, LDAPS와 MSM 모두 강우발생 유무를 잘 재현하였다. 특히, 광역적 강우인 태풍사상에 대해 강우 예측에서 비교적 높은 정확도를 나타내었다. 강우 예측의 정확도 향상을 위해 강우장의 공간 변위를 고려하여 앙상블 강우 분포를 적용한 결과, 강우 예측의 정확도가 향상되는 것으로 나타났다. 홍수 예측의 경우 두 수치예보자료 모두 유출 패턴을 잘 재현하였다. 앙상블 홍수 예측 결과, 단일 강우 자료를 통한 홍수 예측에서의 예측 불확실성을 개선하는 것으로 나타났다. 3개의 강우 사상에 대해 MSM의 예측 결과가 LDAPS의 예측 결과보다 비교적 높은 상관관계를 나타내었다. 본 연구를 통해 강우 및 홍수 예측에 수치예보자료의 적용 가능성이 있다고 판단되며, 홍수 예 경보의 기초자료로 활용성이 있다고 판단된다.

  • PDF

수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로 (CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan)

  • 한상철;박수진;최원식;김재진
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.851-861
    • /
    • 2022
  • 본 연구는 전산유체역학(computational fluid dynamics, CFD) 모델을 이용하여 도시 지역에서 수목이 PM2.5 저감에 미치는 영향을 조사하였다. 현실적인 수치 모의를 위해, 기상청에서 현업으로 운영 중인 국지예보시스템(LDAPS)이 예측한 기상 자료를 CFD 모델의 초기·경계 자료로 사용하였다. CFD 모델 성능 검증은 연구 대상지 내에 구축된 6개의 센서에서 측정한 PM2.5 농도를 이용하였다. 본 연구에서는 수목이 PM2.5 농도 분포에 미치는 영향을 분석하기 위하여, 수목이 식재 되지 않았다고 가정한 경우, 수목이 식재되어 있지만 바람에 대한 항력 효과만 존재한다고 가정한 경우, 수목의 항력 효과와 침적 효과가 모두 존재한다고 가정한 경우에 대한 수치 실험을 수행하였다. 분석대상 기간 동안 PM2.5 저감 효과가 뚜렷하게 나타난 세 가지 영역 중 군부대 내의 PM2.5 평균 농도를 비교한 결과, 수목이 식재되지 않은 경우는 12.8 ㎍ m-3, 수목의 항력 효과만 고려한 경우는 12.5 ㎍ m-3이 나타났고, 수목의 항력 효과와 침적 효과가 모두 고려한 경우는 6.8 ㎍ m-3가 나타났다. 수목에 의한 건성 침적이 PM2.5 농도를 감소시키는 효과가 있는 것으로 확인되었다.

초저고도 바람예측을 위한 WRF의 물리과정 및 초기조건 민감도 평가 (Sensitivity Evaluation of Physics and Initial Condition of WRF for Ultra Low Altitude Wind Prediction)

  • 권재일;김기영;구성관;홍석민
    • 한국항행학회논문지
    • /
    • 제23권6호
    • /
    • pp.487-494
    • /
    • 2019
  • 최근 드론 등의 무인비행체에 대한 관심과 활용이 높아지고 있다. 본 연구에서는 고도 150 m 이하 초저고도의 정확한 바람예측 정보를 제공하기 위해, 물리과정 모수화와 초기조건에 따른 민감도를 평가하여 최적의 물리과정 및 초기조건을 선정하고자 하였다. 이를 위해 GFS 및 LDAPS 자료를 초기 및 경계조건으로 사용하였고, YSU, RUC, ACM2 등의 대기경계층 모수화 방안과 Noah, RUC, Pleim 등의 지면모델을 조합한 7개의 실험을 구축하여, 2018년 4월의 1개월에 대해 수행하였다. 그 결과 GFS 초기자료를 사용한 RUC-YSU 물리과정 조합이 가장 우수한 성능을 나타냈다. 본 연구는 다양한 물리과정의 조합과 초기 및 경계자료를 사용한 실험을 통해 초저고도 바람예측을 위한 최적 모델링 방안을 설정한 것에 의의가 있을 것이라 판단된다.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석 (An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020)

  • 김해민;남형구;김백조;지준범
    • 대기
    • /
    • 제31권4호
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.

고해상도 지상 기온 상세화 모델 개발 (Development of a High-Resolution Near-Surface Air Temperature Downscale Model)

  • 이두일;이상현;정형세;김연희
    • 대기
    • /
    • 제31권5호
    • /
    • pp.473-488
    • /
    • 2021
  • A new physical/statistical diagnostic downscale model has been developed for use to improve near-surface air temperature forecasts. The model includes a series of physical and statistical correction methods that account for un-resolved topographic and land-use effects as well as statistical bias errors in a low-resolution atmospheric model. Operational temperature forecasts of the Local Data Assimilation and Prediction System (LDAPS) were downscaled at 100 m resolution for three months, which were used to validate the model's physical and statistical correction methods and to compare its performance with the forecasts of the Korea Meteorological Administration Post-processing (KMAP) system. The validation results showed positive impacts of the un-resolved topographic and urban effects (topographic height correction, valley cold air pool effect, mountain internal boundary layer formation effect, urban land-use effect) in complex terrain areas. In addition, the statistical bias correction of the LDAPS model were efficient in reducing forecast errors of the near-surface temperatures. The new high-resolution downscale model showed better agreement against Korean 584 meteorological monitoring stations than the KMAP, supporting the importance of the new physical and statistical correction methods. The new physical/statistical diagnostic downscale model can be a useful tool in improving near-surface temperature forecasts and diagnostics over complex terrain areas.

우리나라 농지의 기준증발산 격자자료 비교평가: 2016-2019년의 사례연구 (A Comparison between the Reference Evapotranspiration Products for Croplands in Korea: Case Study of 2016-2019)

  • 김서연;정예민;조수빈;윤유정;김나리;이양원
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1465-1483
    • /
    • 2020
  • 증발산은 토양으로부터 발생하는 증발과 식물의 잎에서 발생하는 증산을 통칭하는 것으로, 물 수지, 가뭄, 작물생장, 기후변화 등의 모니터링에 있어 중요한 요소이다. 실제증발산은 식생 지표면의 물 소비량 또는 물 필요량이며 기준증발산에 작물계수를 곱하여 구하므로, 농지의 실제증발산을 구하기 위해서는 기준증발산의 계산이 정확히 이루어져야 한다. 격자형 기준증발산을 합리적으로 산출하기 위하여 그동안 많은 노력들이 있었고 복수의 산출물이 제공되고 있다. 이에 본 연구에서는 FAO56-PM, LDAPS, PKNU-NMSC, MODIS 기준증발산 산출물을 비교평가 함으로써, 우리나라처럼 복합적이고 이질적인 지표면에서 국지적 규모의 수문 및 농업 분야에 활용하기 위하여 어떤 기준증발산 산출 방법이 적합한지 살펴보고자 한다. 2016~2019년 3~11월의 1일 단위 자료와 8일 합성 자료를 기상청 현장관측치와 비교하여 지점별, 연도별, 월별로 분석하고 시계열변화를 검토한 결과, 기계학습을 통해 우리나라 농지에 대한 지역최적화가 상당히 잘 수행된 PKNU-NMSC 자료의 정확도가 월등히 높게 나타났으며, 시간과 장소에 상관없이 안정적인 산출이 이루어졌음을 확인하였다. 또한 본연구에서는 FAO56-PM, LDAPS, MODIS 산출물에 내재한 정확도 특성을 제시하였으며, 이는 기준증발산 자료 사용에 있어 중요한 정보가 될 것으로 기대한다.