• 제목/요약/키워드: LDA(Linear Discriminant Analysis)

검색결과 170건 처리시간 0.029초

선형판별분석을 이용한 전력분석 기법의 성능 향상 (The Enhanced Power Analysis Using Linear Discriminant Analysis)

  • 강지수;김희석;홍석희
    • 정보보호학회논문지
    • /
    • 제24권6호
    • /
    • pp.1055-1063
    • /
    • 2014
  • 전력소모량을 이용한 부채널 분석의 성능 향상을 위해 다양한 분석기법이 제안되고 있다. 이들 중, 사전처리 단계에서 적용 가능한 파형압축은 전력분석을 위한 소요시간을 단축하고 수집신호의 잡음성분을 줄이기 위해 널리 사용되는 방법이다. 본 논문에서는 영상처리 등에 많이 사용되고 있는 선형판별분석(Linear Discriminant Analysis)을 이용한 전력분석기법을 제안한다. 또한, 실험을 통해 기존의 파형압축방법 중 가장 성능이 좋은 것으로 알려진 주성분분석(Principal Component Analysis)을 이용한 방법과의 성능 비교를 통해 제안기법의 우수성을 증명한다.

An Ensemble Classifier using Two Dimensional LDA

  • Park, Cheong-Hee
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.817-824
    • /
    • 2010
  • Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.

A standardization model based on image recognition for performance evaluation of an oral scanner

  • Seo, Sang-Wan;Lee, Wan-Sun;Byun, Jae-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권6호
    • /
    • pp.409-415
    • /
    • 2017
  • PURPOSE. Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. MATERIALS AND METHODS. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. RESULTS. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. CONCLUSION. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.

유효 주파수 선택과 선형판별분석기법을 이용한 유도전동기 고장진단 시스템 (Induction Motor Diagnosis System by Effective Frequency Selection and Linear Discriminant Analysis)

  • 이대종;조재훈;윤종환;전명근
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.380-387
    • /
    • 2010
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 상호정보량과 선형판별분석기법에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 제안된 방법은 취득된 전류신호를 DFT에 의해 주파수 영역으로 변환한 후 분산정보를 이용하여 고장상태별로 차별성이 큰 순서대로 유효 주파수 성분을 추출한다. 다음 단계로 선택된 주파수 성분에 대해서 선형판별분석기법을 적용하여 고장상태별 특징들을 추출한 후 k-NN 분류기에 의해 유도전동기의 상태를 진단하게 된다. 제안된 방법의 타당성을 보이기 위해 다양한 조건하에서 실험한 결과 기존방법에 비하여 우수한 결과를 나타냈다.

Pattern Recognition for Typification of Whiskies and Brandies in the Volatile Components using Gas Chromatographic Data

  • Myoung, Sungmin;Oh, Chang-Hwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.167-175
    • /
    • 2016
  • The volatile component analysis of 82 commercialized liquors(44 samples of single malt whisky, 20 samples of blended whisky and 18 samples of brandy) was carried out by gas chromatography after liquid-liquid extraction with dichloromethane. Pattern recognition techniques such as principle component analysis(PCA), cluster analysis(CA), linear discriminant analysis(LDA) and partial least square discriminant analysis(PLSDA) were applied for the discrimination of different liquor categories. Classification rules were validated by considering sensitivity and specificity of each class. Both techniques, LDA and PLSDA, gave 100% sensitivity and specificity for all of the categories. These results suggested that the common characteristics and identities as typification of whiskies and brandys was founded by using multivariate data analysis method.

Fuzzy-EBGM을 이용한 얼굴인식과 Fuzzy-LDA를 이용한 홍채인식의 다중생체인식 기법 연구 (Multi-Modal Biometrics Recognition Method of Face Recognition using Fuzzy-EBGM and Iris Recognition using Fuzzy LDA)

  • 고현주;권만준;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.299-301
    • /
    • 2005
  • 본 연구는 생체정보를 이용하여 개인을 인증하고 확인하기 위한 방법으로 기존 단일 생체인식 기법의 단점을 보완하기 위해 홍채와 얼굴을 이용한 다중생체인식(Multi-Modal Biometrics Recognition)기법을 연구하였다. 중국 홍채 데이터베이스 CASIA(Chinese Academy of Science)에 Gabor Wavelet과 FLDA(Fuzzy Linear Discriminant Analysis)를 사용하여 특징벡터를 획득하였으며, FERET(FERET(Face Recognition Technology) 얼굴영상데이터를 사용하여 FERET 연구에서 매우 우수한 성능을 보인 EBGM알고리듬으로 특징벡터를 획득하였다. 이로부터 얻어진 두 score 값에 대하여 다양한 균등화 과정을 시도해 보았으며, 등록자와 침입자를 구분하기 위한 Fusion Algorithm으로 Bayesian Classifier, Support vector machine, Fisher's linear discriminant를 사용하였다. 또한, 널리 사용되는 방법 중 Weighted Summation을 이용하여 다중생체인식의 성능을 비교해 보았다.

  • PDF

주성분 분석을 활용한 생체인식 (Biometrics through PCA & LDA)

  • 오세빈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.515-518
    • /
    • 2017
  • 생체인식기술을 보안에 활용하기 위해 주성분분석을 활용한다. 손의 모양과 동작의 구분을 확인하기 위해 ㄱ부터 ㅎ까지의 수화동작을 촬영한다. 총 스무 명의 성인 남성이 실험에 참여했으며, 각 자음 당 10회씩 촬영을 진행하여 1인당 140장, 총 2800장의 사진을 통해 데이터베이스를 확보하였다. 이를 통해 얻은 데이터베이스에 MATLAB을 이용하여 이미지의 차원을 줄여주는 주성분분석(PCA)과 주요인분석법(LDA)을 적용하여 분석하고, 그 정확도와 신뢰도를 확인하기 위해 동일오류율(EER)을 이용한다.

  • PDF

LDA를 이용한 한국어 연결숫자 인식기 성능향상에 관한 연구 (Study on Performance Improvement of Korean Connected Digit Recognition using LDA)

  • 송화전;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.61-64
    • /
    • 2001
  • 본 논문에서는 class간의 변별력을 증가시키기 위한 유용한 방법인 LDA(Linear Discriminant Analysis)를 사용하여 한국어 숫자음간의 변별력을 높여 연결숫자 인식성능을 높이고자 하였다. 한국어 숫자음은 모두 단음절이며 또한 혼동가능성이 높은 숫자쌍이 존재하여 이것이 전체 인식률을 저하시킨다. LDA를 사용한 경우 숫자열 오인식률이 $8\%$ 감소하였다. 그리고, 음성특징 벡터의 차수를 감소시키고 LDA 사용전 보다 약간의 인식률 증가를 보였다. 그러나, 선형적인 방법으로 분리가 불가능한 class들의 분포가 존재할 때는 LDA를 사용하여도 변별력 향상은 기대하기 어렵다. 이와 같은 분포의 class사이의 변별력을 증가시키기 위해 between-scatter covariance matrix를 구할 때 class 사이에 혼동가능성 정도를 나타내는 weighting factor를 적용하였으며, 그 결과 숫자열 오인식률이 LDA 사용전보다 $9.7\%$ 감소하였다.

  • PDF

PCA & LDA 융합 알고리즘을 이용한 pRBFNNs 패턴 분류기 설계 (Design of pRBFNNs Pattern Classifiers Model Using a Synthesis of PCA & LDA Algorithm)

  • 김나현;유성훈;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1960-1961
    • /
    • 2011
  • 얼굴 인식에서 가장 많이 사용되고 있는 PCA(Principal Component Analysis)는 고차원의 얼굴 데이터를 낮은 차원으로 표현할 수 있다는 장점이 있다. LDA(Linear Discriminant Analysis)는 서로 다른 데이터를 잘 분리할 수 있으며, 얼굴 인식에서 우수한 성능을 보인다. 본 연구에서는 서로의 장점을 결합하여 PCA와 LDA를 혼합, 적용하였다. 고차원의 얼굴데이터를 PCA로 차원 축소한 후 LDA를 이용해 더욱 효과적인 분류가 되어 얼굴 인식률을 향상시킨다. 인식 모듈로는 pRBFNN(Polynomial Based Radial Basis Function Neural Networks) 모델을 구축하여 고차원 패턴인식 문제에 대한 해결책을 제시하고자 한다. 그리고 제안된 패턴분류기는 얼굴 데이터를 사용하여 성능을 확인한다.

  • PDF

얼굴인증을 위한 PCA와 LDA 융합 알고리즘 구현 잊 성능 비교 분석 (Performance Evaluation of Fusion Algorithms Using PCA and LDA for Face Verification)

  • 정장현;구은경;강행봉
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.718-720
    • /
    • 2004
  • 얼굴 인증에서 가장 보편적으로 사용되고 있는 주성분 분석(PCA . Principal Component Analysis)은 정면 얼굴과 같은 특징 패턴에 대해서 비교적 높은 성능을 보인다. 인식률을 떨어뜨리지 않으면서 데이터량을 줄일 수 있는 효과가 있어 클래스를 잘 축약하여 표현하기에 유용하다. 하지만 조명이나 표정의 변화에 대해서는 성능을 보장할 수 없다 이를 보완하기 위해 성분이 다른 클래스간의 분리가 수월하도록 선형판별분석(LDA Linear Discriminant Analysis)을 사용한다 LDA는 데이터의 양이 적을 때는 성능이 떨어지는 단점이 있다 그래서 PCA와 LDA를 융합한 기술을 사용하면 더 나은 성능을 얻을 수 있는데 Min, Max, Mean, Append, Majority voting방법 등이 이에 해당된다. 하지만 기존 연구에서는 제한적 데이터베이스에 대한 실험에 그쳐 실험 결과의 객관성이 부족했다. 본 논문에서는 정형화된 환경에서 여러 가지 데이터베이스를 사용해 실험함으로써 Min, Max, Mean 융합 알고리즘의 성능을 비교 분석한다. 융합 알고리즘이 언제나 좋은 성능을 내는 것은 아니지만 얼굴영상에서 조명이나 표정 등이 변화함에 상관없이 일정 수준의 인증율을 보장하고 있다.

  • PDF