전력소모량을 이용한 부채널 분석의 성능 향상을 위해 다양한 분석기법이 제안되고 있다. 이들 중, 사전처리 단계에서 적용 가능한 파형압축은 전력분석을 위한 소요시간을 단축하고 수집신호의 잡음성분을 줄이기 위해 널리 사용되는 방법이다. 본 논문에서는 영상처리 등에 많이 사용되고 있는 선형판별분석(Linear Discriminant Analysis)을 이용한 전력분석기법을 제안한다. 또한, 실험을 통해 기존의 파형압축방법 중 가장 성능이 좋은 것으로 알려진 주성분분석(Principal Component Analysis)을 이용한 방법과의 성능 비교를 통해 제안기법의 우수성을 증명한다.
Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.
Seo, Sang-Wan;Lee, Wan-Sun;Byun, Jae-Young;Lee, Kyu-Bok
The Journal of Advanced Prosthodontics
/
제9권6호
/
pp.409-415
/
2017
PURPOSE. Accurate information is essential in dentistry. The image information of missing teeth is used in optically based medical equipment in prosthodontic treatment. To evaluate oral scanners, the standardized model was examined from cases of image recognition errors of linear discriminant analysis (LDA), and a model that combines the variables with reference to ISO 12836:2015 was designed. MATERIALS AND METHODS. The basic model was fabricated by applying 4 factors to the tooth profile (chamfer, groove, curve, and square) and the bottom surface. Photo-type and video-type scanners were used to analyze 3D images after image capture. The scans were performed several times according to the prescribed sequence to distinguish the model from the one that did not form, and the results confirmed it to be the best. RESULTS. In the case of the initial basic model, a 3D shape could not be obtained by scanning even if several shots were taken. Subsequently, the recognition rate of the image was improved with every variable factor, and the difference depends on the tooth profile and the pattern of the floor surface. CONCLUSION. Based on the recognition error of the LDA, the recognition rate decreases when the model has a similar pattern. Therefore, to obtain the accurate 3D data, the difference of each class needs to be provided when developing a standardized model.
본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 상호정보량과 선형판별분석기법에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 제안된 방법은 취득된 전류신호를 DFT에 의해 주파수 영역으로 변환한 후 분산정보를 이용하여 고장상태별로 차별성이 큰 순서대로 유효 주파수 성분을 추출한다. 다음 단계로 선택된 주파수 성분에 대해서 선형판별분석기법을 적용하여 고장상태별 특징들을 추출한 후 k-NN 분류기에 의해 유도전동기의 상태를 진단하게 된다. 제안된 방법의 타당성을 보이기 위해 다양한 조건하에서 실험한 결과 기존방법에 비하여 우수한 결과를 나타냈다.
The volatile component analysis of 82 commercialized liquors(44 samples of single malt whisky, 20 samples of blended whisky and 18 samples of brandy) was carried out by gas chromatography after liquid-liquid extraction with dichloromethane. Pattern recognition techniques such as principle component analysis(PCA), cluster analysis(CA), linear discriminant analysis(LDA) and partial least square discriminant analysis(PLSDA) were applied for the discrimination of different liquor categories. Classification rules were validated by considering sensitivity and specificity of each class. Both techniques, LDA and PLSDA, gave 100% sensitivity and specificity for all of the categories. These results suggested that the common characteristics and identities as typification of whiskies and brandys was founded by using multivariate data analysis method.
본 연구는 생체정보를 이용하여 개인을 인증하고 확인하기 위한 방법으로 기존 단일 생체인식 기법의 단점을 보완하기 위해 홍채와 얼굴을 이용한 다중생체인식(Multi-Modal Biometrics Recognition)기법을 연구하였다. 중국 홍채 데이터베이스 CASIA(Chinese Academy of Science)에 Gabor Wavelet과 FLDA(Fuzzy Linear Discriminant Analysis)를 사용하여 특징벡터를 획득하였으며, FERET(FERET(Face Recognition Technology) 얼굴영상데이터를 사용하여 FERET 연구에서 매우 우수한 성능을 보인 EBGM알고리듬으로 특징벡터를 획득하였다. 이로부터 얻어진 두 score 값에 대하여 다양한 균등화 과정을 시도해 보았으며, 등록자와 침입자를 구분하기 위한 Fusion Algorithm으로 Bayesian Classifier, Support vector machine, Fisher's linear discriminant를 사용하였다. 또한, 널리 사용되는 방법 중 Weighted Summation을 이용하여 다중생체인식의 성능을 비교해 보았다.
생체인식기술을 보안에 활용하기 위해 주성분분석을 활용한다. 손의 모양과 동작의 구분을 확인하기 위해 ㄱ부터 ㅎ까지의 수화동작을 촬영한다. 총 스무 명의 성인 남성이 실험에 참여했으며, 각 자음 당 10회씩 촬영을 진행하여 1인당 140장, 총 2800장의 사진을 통해 데이터베이스를 확보하였다. 이를 통해 얻은 데이터베이스에 MATLAB을 이용하여 이미지의 차원을 줄여주는 주성분분석(PCA)과 주요인분석법(LDA)을 적용하여 분석하고, 그 정확도와 신뢰도를 확인하기 위해 동일오류율(EER)을 이용한다.
본 논문에서는 class간의 변별력을 증가시키기 위한 유용한 방법인 LDA(Linear Discriminant Analysis)를 사용하여 한국어 숫자음간의 변별력을 높여 연결숫자 인식성능을 높이고자 하였다. 한국어 숫자음은 모두 단음절이며 또한 혼동가능성이 높은 숫자쌍이 존재하여 이것이 전체 인식률을 저하시킨다. LDA를 사용한 경우 숫자열 오인식률이 $8\%$ 감소하였다. 그리고, 음성특징 벡터의 차수를 감소시키고 LDA 사용전 보다 약간의 인식률 증가를 보였다. 그러나, 선형적인 방법으로 분리가 불가능한 class들의 분포가 존재할 때는 LDA를 사용하여도 변별력 향상은 기대하기 어렵다. 이와 같은 분포의 class사이의 변별력을 증가시키기 위해 between-scatter covariance matrix를 구할 때 class 사이에 혼동가능성 정도를 나타내는 weighting factor를 적용하였으며, 그 결과 숫자열 오인식률이 LDA 사용전보다 $9.7\%$ 감소하였다.
얼굴 인식에서 가장 많이 사용되고 있는 PCA(Principal Component Analysis)는 고차원의 얼굴 데이터를 낮은 차원으로 표현할 수 있다는 장점이 있다. LDA(Linear Discriminant Analysis)는 서로 다른 데이터를 잘 분리할 수 있으며, 얼굴 인식에서 우수한 성능을 보인다. 본 연구에서는 서로의 장점을 결합하여 PCA와 LDA를 혼합, 적용하였다. 고차원의 얼굴데이터를 PCA로 차원 축소한 후 LDA를 이용해 더욱 효과적인 분류가 되어 얼굴 인식률을 향상시킨다. 인식 모듈로는 pRBFNN(Polynomial Based Radial Basis Function Neural Networks) 모델을 구축하여 고차원 패턴인식 문제에 대한 해결책을 제시하고자 한다. 그리고 제안된 패턴분류기는 얼굴 데이터를 사용하여 성능을 확인한다.
얼굴 인증에서 가장 보편적으로 사용되고 있는 주성분 분석(PCA . Principal Component Analysis)은 정면 얼굴과 같은 특징 패턴에 대해서 비교적 높은 성능을 보인다. 인식률을 떨어뜨리지 않으면서 데이터량을 줄일 수 있는 효과가 있어 클래스를 잘 축약하여 표현하기에 유용하다. 하지만 조명이나 표정의 변화에 대해서는 성능을 보장할 수 없다 이를 보완하기 위해 성분이 다른 클래스간의 분리가 수월하도록 선형판별분석(LDA Linear Discriminant Analysis)을 사용한다 LDA는 데이터의 양이 적을 때는 성능이 떨어지는 단점이 있다 그래서 PCA와 LDA를 융합한 기술을 사용하면 더 나은 성능을 얻을 수 있는데 Min, Max, Mean, Append, Majority voting방법 등이 이에 해당된다. 하지만 기존 연구에서는 제한적 데이터베이스에 대한 실험에 그쳐 실험 결과의 객관성이 부족했다. 본 논문에서는 정형화된 환경에서 여러 가지 데이터베이스를 사용해 실험함으로써 Min, Max, Mean 융합 알고리즘의 성능을 비교 분석한다. 융합 알고리즘이 언제나 좋은 성능을 내는 것은 아니지만 얼굴영상에서 조명이나 표정 등이 변화함에 상관없이 일정 수준의 인증율을 보장하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.