• Title/Summary/Keyword: LD 50

Search Result 743, Processing Time 0.026 seconds

Effects of Temperature on the Spore Release and Growth of Lithophyllum yessoense and Hildenbrandia rubra (납작돌잎(Lithophyllum yessoense)과 진분홍딱지(Hildenbrandia rubra)의 포자방출 및 생장에 미치는 수온의 영향)

  • Song, Ji Na;Park, Seo Kyoung;Heo, Jin Suk;Oh, Ji Chul;Kim, Young Sik;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.3
    • /
    • pp.296-302
    • /
    • 2013
  • The effects of temperature on spore release, growth and photosynthetic efficiency of Lithophyllum yessoense and Hildenbrandia rubra were examined. L. yessoense was collected at Galnam and H. rubra was collected at Gyeokpo, Korea. The experimental temperatures were different for spore release (10, 15, $20^{\circ}C$), sporeling growth (10, 15, 20, 25, $30^{\circ}C$) and photosynthetic efficiency (10, 15, 20, $25^{\circ}C$). All other culture conditions were the same: 34 psu, 12:12 LD and $50{\mu}mol$ photon $m^{-2}s^{-1}$. Spore liberation was maximal at $10^{\circ}C$ for L. yessoense and at $20^{\circ}C$ for H. rubra. After 14 days, the surface area of L. yessoense was 0.031 $mm^2$ at $25^{\circ}C$ and for H. rubra was 0.032 $mm^2$ at $20^{\circ}C$. Sporelings of L. yessoense were a dark-red color and grew in a round shape. In contrast, H. rubra was bright pink and changed from a round shape in the early growth stage to later become flabelliform. Photosynthetic efficiency was highest between $20-25^{\circ}C$ in both species. In conclusion, L. yessoense and H. rubra display different physiological features based on the optimal temperatures for spore release and sporling growth.

Single dose toxicity study of Jengjengamiyjintang in rats (정전가미이진탕(正傳加味二陳湯)의 랫드에서의 단회투여독성시험(單回投與毒性試驗))

  • Kim Sang-Chan;Kwon Young-Kyu;Byun Jun-Seok;Kim Han-Kyun;Byun Sung-Hui
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.73-83
    • /
    • 2002
  • The single dose toxicity of Jengjengamiyjintang, a herbal drug for duodenal ulcer was evaluated in male and female Sprague-Dawley (SD) rats. Jengjengamiyjintang was once administered to both sexes of rats at the dose levels of 2000, 1000, 500, 250 and 125mg/kg for oral route according to KFDA guidelines for single dose toxicity test (1999-61). In addition, vehicle control group was added in order to compare clinical signs, body weight changes and abnormal necropsy findings. After single administration, clinical signs were observed every twice a day for 14 days and body weights were measured 5 times including initial measurement on day 0. When observation period was over, the animals were sacrificed and macroscopic examination of major organs was conducted. Neither significant clinical signs nor death after administration was observed during the observation periods except for soft feces or diarrhea that were restricted to Day 1 of 2000 and 1000mg/kg-dosing groups. Although some accidental findings such as gross and histopathological changes of lung that were demonstrated in some animals of all experimental groups including vehicle control group, no abnormal necropsy findings and changes of body weight were observed at terminal necropsy in both sexes. From these results, it is considered that $LD_{50}$ of Jengjengamiyjintang is over 2000mg/kg in oral administration in both sexes of rats and approximated lethal dose was considered over 2000mg/kg.

  • PDF

The acute and sub-acute toxicity of C60/PVP complex in vivo

  • Dumpis, Marina A.;Iljin, Viktor V.;Litasova, Elena V.;Nikolaev, Dmitry N.;Bulion, Valentina V.;Krylova, Irina B.;Okunevich, Irina V.;Rodionova, Olga M.;Safonova, Albina F.;Selina, Elena N.;Piotrovsky, Levon B.
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.167-179
    • /
    • 2016
  • The detailed study of acute and sub-acute toxicity of the complex polyvinylpyrrolidon (PVP 20 kDa)-wrapped fullerene $C_{60}$ after intraperitoneal (ip) administration was carried out on adult male Wistar rats. The $LD_{50}$ value of $C_{60}/PVP$ complex was found to be 7, 8 g/kg. In sub-acute study which lasted for 30 days the rats were exposed to daily administration of the complex in the doses of 350 or 700 mg/kg. All animals survived during the study and had no significant changes in clinical signs, organ weight, hematological and biochemical parameters of blood. The electrophysiological properties of myocardium and the excretory function of kidneys remained normal. Histological analysis of liver, kidney and spleen at the end of the study also did not demonstrate toxic alterations. It was thus established that intraperitoneal administration of complex $C_{60}/PVP$ has no toxic effect. These results suggest that $C_{60}/PVP$ has no acute and sub-acute toxicity and is a perspective substance for potential application in biology and medicine.

Protective Effect of Panax ginseng extract on Renal Functions Altered by Mercuric Chloride in Albino Rats

  • Saxena, Prabhu-N.;Mahour, K.;Kumar, Ashok
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.100-105
    • /
    • 2006
  • Liver and kidney are specific organs which play an active role in biotransformation and detoxification mechanisms. Ant adverse effect of chemicals or heavy metal can cause the delay or fade in these mechanisms. Present study was designed to find out the protective effect of Panax ginseng extract on renal functions altered by mercuric chloride (heavy metal) in albino rat. Fifty albino rats were divided into 10 groups. Five groups for acute study and five groups for sud-acute study viz. control group (Tween 20 and distilled water), mercuric chloride treated group (0.926 mg/kg body wt. for acute and 0.044 mg/kg body wt. for sub-acute group after calculated $LD_{50}$ (9.26 mg/kg body wt.) by probit analysis (Finney, 1971), Panax ginseng extract treated group (10 mg/kg body wt. for acute and sub-acute sets), mercuric chloride treated followed by Panax ginseng extract and Panax ginseng extract followed by mercuric chloride group. All doses were given orally by gavage tube. The result revealed that the serum urea and creatinine significantly increased in mercuric chloride treated group, while significantly decreased (p<0.01) in Panax ginseng extract group after acute and sub-acute treatment. The biochemical estimation is also confirmed by nephropathological aspect. However, the Panax ginseng extract treated followed by mercuric chloride group is more prominent than the mercuric chloride treated followed by Panax ginseng extract group. It can be concluded that Panax ginseng extract had a protective nature on renal functions against mercuric chloride toxicity in albino rats.

Panax ginseng Extract as Protectant in Mercuric Chloride Induced Alterations in Protein Biochemistry in the Serum of Albino Rats

  • Mahour, K.;Saxena, Prabhu-N.;Kumar, Ashok
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.106-111
    • /
    • 2006
  • Adverse changes in individual's biochemistry under heavy metal stress are directly linked with its metabolic activity and health status. The present investigation highlights the differences in protecting role of Panax ginseng extract against mercuric chloride induced alterations in serum proteins. The assessment was based on dividing fifty albino rats into two sets, one for acute and the other for sub-acute study. All the sets had five groups with five albino rats in each i.e. control group, mercuric chloride treated group, Panax ginseng extract treated group, mercuric chloride followed by Panax ginseng extract treated group and Panax ginseng extract followed by mercuric chloride treated group. Mercuric chloride was given orally 0.926 mg/kg body weight for acute set and 0.044 mg/kg body weight for sub-acute set after LD50 (9.26 mg/kg body weight) determination by probitt analysis. 10 mg/kg body weight Panax ginseng extract was given in both acute and sub-acute sets after incorporating safety trials. The control group received tween-20 and distilled water only. The result exhibited significantly reduction (P<0.01) in serum protein, albumin and globulin following mercuric chloride intoxication whereas significant (P<0.01) enhancement in other groups with Panax ginseng extract as an ingredient confirming its protective role. All serum samples were also electrophoresed in 10% SDS with standard marker using discontinuous buffering system. Gradual disappearance of alpha-2 and beta-1 globulin bands from electrophoretic pattern was observed, while a single sharp band was observed between beta-2 and gamma globulin in serum protein pattern of acutely mercuric chloride treated rats. However, this band could not be visualized in sub-acute studies. Panax ginseng extract exhibits a better protection after acute intoxication.

Antitumor Effect of $18{\beta}$-Glycyrrhetinic Acid against Human Tumor Xenografts Caused by A549 Cancer Cell (A549 암세포 기인성 종양에 대한 $18{\beta}$-Glycyrrhetinic Acid의 항종양효과)

  • Kim, Ha-Yan;Kim, Song-Yi;Lee, Jue-Hee;Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • Many reports indicate that $18{\beta}$-glycyrrhetinic acid ($18{\beta}$-GA) from Glycyrrhizae Radix has anti-inflammatory and immunoregulatory activities, whereas reports regarding anticancer activity of the compound are few. In present study, we investigated antitumor effect of $18{\beta}$-GA on tumor caused by A549 cancer cell in mice. Data resulting from the cytotoxicity assay showed that $18{\beta}$-GA caused killing of A549 cells. $LD_{50}$ values of $18{\beta}$-GA were app. 180 ${\mu}M$ and 80 ${\mu}M$, corresponding to 48 hr- and 72 hr-treatments, displaying that the killing activity was more effective as the $18{\beta}$-GA treatment was prolonged. Based on these data, antitumor effect of $18{\beta}$-GA was tested in nude mice. For induction of the tumor, A549 ($3{\times}10^6$ cells/mouse) was injected subcutaneously into the lateral abdomen of nude mice (Balb/c nu/nu). To determine the antitumor effect, nude mice with tumor were given $18{\beta}$-GA (1 mg/200 ${\mu}l$/mouse) intraperitoneally every three days for four times. Tumor-sizes were measured with a caliper for a period of 24 days. Results showed that the $18{\beta}$-GA treatment reduced the tumor-sizes (P<0.05) as compared with negative control nude mice that received diluent (DPBS). The reduction degree was greater than reduction degree by doxorubicin (60 ${\mu}g$/mouse), and the pattern of reduction was almost sustained during the entire period of the observation. In conclusion, our studies demonstrate that $18{\beta}$-GA has antitumor activity to the A549 cancer cell-caused tumor.

Anti-Cancer Activity of T-Type Calcium Channel Blocker In Vivo

  • Park, Hang-Ah;Jung, Soo-Yeon;Lee, So-Hyung;Kang, Han-Byul;Min, Min-Sik;Kim, Jung-Ahn;Choo, Dong-Joon;Oh, Chun-Rim;Kim, Young-Deuk;Lee, Kyung-Tae;Lee, Jae-Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3353-3358
    • /
    • 2010
  • 3,4-Dihydroquinazoline 1 as T-type calcium channel blocker was in vivo evaluated against A549 xenograft in BALB/c-nu Slc mice, which exhibited 54% tumor growth inhibition through oral administration of 8 mg/kg of body weight and was slightly less active than doxorubicin (68%). In addition, this compound was also profiled for its acute toxicity to ICR mice to afford oral $LD_{50}$ value of 1,038 mg/kg of body weight.

Evaluation of the Oral Acute Toxicity of Black Ginseng in Rats

  • Lee, Mi-Ra;Oh, Chang-Jin;Li, Zheng;Li, Jing-Jie;Wang, Chun-Yan;Wang, Zhen;Gu, Li-Juan;Lee, Sang-Hwa;Lee, Jae-Il;Lim, Beong-Ou;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • We studied the acute oral toxicity of black ginseng (BG) produced by heat process in rats. Single acute BG extract doses of 0, 5, 10, and 15 g/kg dissolved in saline were administered by oral gavage and the animals were kept under observation for 14 days. The single administration of BG extract up to 15 g/kg did not produce mortality, behavioral change or abnormal clinical signs in the rats. These results indicated that the oral $LD_{50}$ of the BG extract in the rats is higher than 15 g/kg. Compared to the control group, no treatment-related biologically significant effects of BG extract were noted in the measurements of the body weight or food intake. At the end of the period, the biochemical parameters and hematological parameters were analyzed in the plasma and blood. A histopathological examination of the liver and kidney was also conducted. Only the blood nitrogen urea and potassium levels in the biochemical indices showed significant differences at 10 and 15 g/kg doses of BG extract compared to the control group. These changes were not considered to be due to the toxicity. None of the other clinical chemistry parameters were affected. Therefore, these results indicate that the BG by heat processing is virtually nontoxic.

Effects of Garlic Extract for Protecting the Infection of Influenza Virus (감기바이러스(인플루엔자) 감염에 대한 마늘의 방어효과)

  • 김건희;영정승차;박무현;하상도
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.128-133
    • /
    • 2000
  • This study was designed to verify the efficacy of garlic extracts for protecting the infecton of influenza and Japanese B encephalitis virus. Influenza virus (AO/PR8 strain) and Japanese B encephalitis virus (JaGAr O1 strain) were used to attack mouse through nasal route and each vaccines were injected subcutaneously. 0.002 and 0.2 mL/day of garlic extracts were orally administered to mice. The blood and serum samples were taken from the mice to measure LD50, Defense Index (DI), virus-neutralizing antibody for comparing virus influence inhibiting activities. Defense indices of the male and female mice were not significantly different at every experiment. Vaccination effectively inhibited the influence of influenza virus and 0.002 mL/day garlic extract (0.55$\pm$0.05) resulted in significantly higher DI than the control (0$\pm$0.05) (p<0.05). Although 0.002 mL/day garlic extract (0.55$\pm$0.05) resulted in significantly lower DI than the vaccination (1.10$\pm$0.05), 0.2 mL/day garlic extract (2.05$\pm$0.05) resulted in 10 times higher DI than the vaccination (1.10$\pm$0.05). Garlic extract did not affect DI in Japanese B encephalitis virus influence of the vaccinated mouse, but significantly reduced DI of the non-vaccinated mouse (p<0.05). Garlic extracts did not affect the production of the neutralizing antibody against influenza by vaccination. However, neutralizing antibody production of Japanese B encephalitis was accelerated by vaccination. Consequently, the current study proved the efficacy of garlic on inhibition of influenza virus. Finally, it is very hard to show the higher preventing effect on flu through ingestion of garlic as a food than vaccination.

  • PDF

Studies on the Selective Toxicity of Insecticides for Rice Insect Pests between Some Dominant Rice Insect Pests and a Predatious Spider, Pirata subpiraticus (수도주요해충 및 포식성천적 황산적거미에 대한 살충제의 선택독성에 관한 연구)

  • Yoo J.K.;Kwon Y.W.;Park H.M.;Lee H.R.
    • Korean journal of applied entomology
    • /
    • v.23 no.3 s.60
    • /
    • pp.166-171
    • /
    • 1984
  • The present studies were conducted to investigate the relative toxicity of several insecticides to the rice insect pests and the predatious spider, Pirate subpiraticus. In laboratory test by topical application, BPMC and MIPC for the plant and leafhoppers were toxic to Nilaparvata lugens, but less toxic to Pirata subpiraticus. Other carbamate insecticides such as carbaryl, carbofuran, and MTMC showed highly toxic effect on P. subpiraticus as well as N. lugens. No organophosphates showed selective toxicity to P. subpiraticus. Thiocyclam, effective to Chilo suppressalis and Sesamia inferens, had highly good selective toxicity to P. subpiraticus. In case of insecticides for Nephotettix cincticeps, BPMC only had a little selective toxicity between N. cincticeps and P. subpiraticus. Organophosphate insecticides which had been reported to induce chemical resistance to N. cincticeps showed high $LD_{50}$ value to N. cincticeps. In pot trials, dust formulation was more toxic to P. subpiraticus than emulsifiable concentrate. It was more toxic to P. subpiraticus to increase number. of insecticide application.

  • PDF