• Title/Summary/Keyword: LCLC ( Inductor- Capacitor- Inductor- Capacitor)

Search Result 2, Processing Time 0.009 seconds

Operating Characteristics in LCLC Resonant Converter with A Low Coupling Transformer. (낮은 커플링 변압기를 갖는 LCLC 공진컨버터 동작특성)

  • Kong Young-Su;Kim Eun-Soo;Lee Hyun-Kwan;Cho Jung-Goo;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.343-350
    • /
    • 2005
  • Conventionally, for transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system. However, the high frequency series resonant converter has the disadvantages such as the low efficiency, the high voltage gain characteristics and deviation of the phase angle in the overall load range. To improve this disadvantages, In this paper, the characteristics of the high efficiency and unit voltage gain as well as in-phase are revealed in the proposed three-level LCLC (Inductor-Capacitor- Inductor-Capacitor) resonant converter. The results are verified on the simulation based on the theoretical analysis and the 4kW experimental Prototype.

Contactless power supply using three-level LCLC resonant converter (3레벨 LCLC 공진 컨버터를 적용한 비접촉 전원)

  • Lee, H.K.;Kong, Y.S.;Kim, E.S.;Cho, J.G.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.102-105
    • /
    • 2005
  • For transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system. However, the high frequency series resonant converter has the disadvantages such as the low efficiency, the high voltage gain characteristics and deviation of the phase angle in the overall load range. To improve this disadvantage, In this paper, the characteristics of the high efficiency and unit voltage gain as well as in phase are revealed in the proposed three-level LCLC ( Inductor - Capacitor - Inductor -Capacitor)resonant converter. The results are verified on the simulation based on the theoretical analysis and the 4kW experimental prototype.

  • PDF