• Title/Summary/Keyword: LCL(Latching Current Limiter)

Search Result 3, Processing Time 0.014 seconds

The Analysis of the LCL Set-up Parameters for Satellite Power Distribution (위성전원분배를 위한 LCL 동작 파라미터 설정분석)

  • Lim, Seong-Bin;Jeon, Hyun-Jin;Kim, Kyung-Soo;Kim, Tae-Youn
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.56-64
    • /
    • 2011
  • In this paper, the characteristics of LCL set-up parameters for the satellite load distribution are analyzed under the electrical system environment, implemented the LCL circuits and evaluated the performance and its behaviour. Recently, it is implemented the load distribution circuit by latching current limiter(LCL) rather than conventional fuse and relay for the protection of the satellite power system from a fault load. The LCL circuit is composed of the electrical components, not mechanical parts with the fuse and relay. When detected the over current on a fault load, it is activated to maintain the trip-off level for set-up time and then cut-off the load power by the active control. It is more flexible and provided a chance to reuse of the load in case of temporarily event, but the fuse and relay can't be used again after activating due to the physical disconnection. However, for implementation of LCL circuit, it should be carefully considered the behavior of the LCL circuit under the worst electrical system environment and applied it to define the set-up parameters related with over-current inhibition.

A Study on the Fuse Sizing Technique for the Protection of Satellite Power System (인공위성 전력 시스템 보호를 위한 퓨즈 선정 기법 연구)

  • Jeon, Hyeon-Jin;Lim, Seong-Bin;Lee, Sang-Rok
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Power system in satellite is protected by installing fuses, LCLs (Latching Current Limiters), etc. between satellite power supply and loads. In this paper, the fuse sizing technique for satellite power system protection is addressed. Detailed fuse sizing method is explained and it is shown that the single fuse connection method is mathematically subordinated to the parallel fuse connection method. In addition, appropriate fuse selection method is newly suggested under a situation where exact current characteristics of a load connected to a fuse is unknown.

A Study on LCL Circuit for Satellite Power System Applying WBG Device (WBG 소자를 적용한 위성 전력 시스템용 LCL 회로에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man;Kim, Hyun Bae;Park, Sung Woo;Kim, Kyu Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.101-106
    • /
    • 2022
  • In this paper, WBG semiconductor such as SiC and GaN were applied as power switches for LCL circuit that can be applied to satellite power systems and the test results of the LCL circuit are reported. P-channel MOSFET and N-channel MOSFET, which were generally used in the conventional LCL circuit, were applied together to expand the utility of the test results. The design and stability evaluation were performed using a Micro Cap circuit simulation program. For the test circuit, a module using each switch was manufactured, and a total of 5 modules were manufactured and the steady state and transient state characteristics were compared. From the experimental results, the LCL circuit for power supply of the satellite power system constructed in this paper satisfied the constant current and constant voltage conditions under various operating conditions. The P-channel MOSFET showed the lowest efficiency characteristics, and the three N-channel switches of Si, SiC and GaN showed relatively high efficiency characteristics of up to 99.05% or more. In conclusion, it was verified that the on-resistor of the switch had a direct effect on the efficiency and loss characteristics.