• 제목/요약/키워드: LCF

검색결과 76건 처리시간 0.029초

316L 스테인리스 강의 고온 저주기 피로 수명식 개발 (Development of a New LCF Life Prediction Model of 316L Stainless Steel at Elevated Temperature)

  • 홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, tensile behavior and low cycle fatigue behavior of 316L stainless steel which is currently favored structural material for several high temperature components such as the liquid metal cooled fast breeder reactor (LMFBR) were investigated. Research was performed at 55$0^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ since working temperature of 316L stainless steel in a real field is from 40$0^{\circ}C$ to $650^{\circ}C$. From tensile tests performed by strain controls with $1{\times}10^{-3}/s,\; l{\times}10^{ -4}/s \;and\; 1{\times}10/^{ -5}/ s $ strain rates at each temperature, negative strain rate response (that is, strain hardening decreases as strain rate increases) and negative temperature response were observed. Strain rate effect was relatively small compared with temperature effect. LCF tests with a constant total strain amplitude were performed by strain control with a high temperature extensometer at R.T, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and total strain amplitudes of 0.3%~0.8% were used and test strain rates were $1{times}10^{-2} /s,\; 1{times}10^{-3} /s\; and\; 1{times}10^{-4} /s$. A new energy based LCF life prediction model which can explain the effects of temperature, strain amplitude and strain rate on fatigue life was proposed and its excellency was verified by comparing with currently used models.

Comparison of Upper and Lower Cervical Muscle Strengths Between Subjects With and Without Forward Head Posture

  • Eun, Ji-yeon;Kwon, Oh-yun;Hwang, Ui-jae;Jung, Sung-hoon;Ahn, Sun-hee
    • 한국전문물리치료학회지
    • /
    • 제27권4호
    • /
    • pp.272-277
    • /
    • 2020
  • Background: Forward head posture (FHP) is common postural malalignment. FHP is described relatively extension to upper cervical and lower cervical is relatively flexion. Although several researchers mentioned the lower cervical flexion posture in FHP, most of the studies related to FHP is focused on the deep cervical flexor function. Objects: The purposes of present study is to compare the cervical strength (upper cervical extension [UCE], lower cervical extension [LCE], upper cervical flexion [UCF], lower cervical flexion [LCF]) between individuals with and without FHP. Methods: Fifty-one participants are recruited. Participants who have the craniovertebral angle (CVA) less than 48 degree were classified to the FHP group (n = 24) and the others were included in without FHP group (n = 27). The cervical strength (UCE, LCE, UCF, LCF) were measured using Smart KEMA strength sensor and the strength data was normalized by body weight. All strength measurement conducted at head and neck neutral position in sitting. Independent t-test was used to compare the cervical strength between individuals with and without FHP. Results: The mean value of CVA was greater in without FHP group than with FHP group (p < 0.000). The strength value of UCF (p < 0.002) and LCE (p < 0.001) was significant less in FHP group than without FHP group. But no significant differences were seen in the LCF and UCE strength between two groups. Conclusion: UCF and LCE weakness in FHP group should be considered to evaluate and manage the individuals with FHP.

산소가 제거된 310℃ 순수환경에서 CF8M 주조 스테인리스강의 환경 피로거동 - 수소 및 미세구조의 영향 (Environmental Fatigue Behaviors of CF8M Stainless Steel in 310℃ Deoxygenated Water - Effects of Hydrogen and Microstructure)

  • 장훈;조평연;장창희;김태순
    • 대한기계학회논문집A
    • /
    • 제38권1호
    • /
    • pp.11-16
    • /
    • 2014
  • CF8M (11% ferrite) 주조 스테인리스강의 $310^{\circ}C$ 순수환경에서의 저주기피로 수명에 미치는 수소 및 미세구조의 영향을 분석하였다. CF8M 의 경우, 공기환경 대비 $310^{\circ}C$ 순수환경에서의 피로수명의 감소는 단조재인 316LN 에 비해 다소 작았다. 미세구조 및 파면 분석을 통해, CF8M 의 저주기피로 수명의 감소는 316LN 의 경우와 마찬가지로 수소유기균열에 의한 것으로 판단되었다. 그러나, CF8M 의 경우, 페라이트상 경계에 수소유기균열에 의한 2 차 균열이 빈번히 발생함에 따라 균열 선단에서의 응력집중이 저하되는 효과가 있었다. 이러한 응력집중의 완화로 인해 수소유기균열에 의한 피로균열진전이 둔화되어 결과적으로 저주기피로 수명의 저하가 완화되는 것으로 판단되었다.

열기계적 피로에 따른 단결정 니켈기 초내열합금의 변형 및 파괴거동 (Deformation and Failure Behavior during Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy)

  • 강정구;홍현욱;최백규;김인수;강남현;조창용
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.112-120
    • /
    • 2011
  • The out-of-phase thermo-mechanical fatigue (OP TMF) in a <001> oriented single crystal nickel-based superalloy CMSX-4 has been studied. OP TMF life was less than a half of low cycle fatigue(LCF) life in spite of a small hysteresis loop area of OP TMF compared to that of LCF. The failure was caused by the initiation of a crack at the oxide-layered surface followed by its planar growth along the <100> ${\gamma}$ channel in both LCF and OP TMF. However, deformation twins appeared near the major crack of OP TMF. The multiple groups of parallel twin plates on {111} planes provided a preferential path for crack propagation, which caused a significant decrease in OP TMF life. Additionally, the analysis on the surface crack morphology revealed that the tensile strain at the minimum temperature of OP TMF was found to accelerate the crack propagation.

Nb 및 Mo 첨가 페라이트계 스테인리스강의 등온 저주기 및 열기계적 피로에 따른 변형거동 (Cyclic Deformation Behaviors under Isothermal and Thermomechanical Fatigue Conditions in Nb and Mo Added 15Cr Ferritic Stainless Steel)

  • 정재규;오승택;최원두;이두환;임종대;오용준
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.707-715
    • /
    • 2009
  • This paper deals with cyclic stress and strain responses during isothermal low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) loadings on Nb and Mo containing 15Cr stainless steel, which is used for exhaust manifolds in automobiles. The test temperatures ($T_{i}$) of the isothermal LCF were 600 and $800^{\circ}C$. The minimum temperature of the TMF test was $100^{\circ}C$ and the maximum temperaures ($T_{p}$) were varied between 500 and $800^{\circ}C$. In both loading conditions, weak cyclic softening is observed at $T_{i}=T_{p}=800^{\circ}C$, but the transition to strong cyclic hardening is completed with the temperature decrease below $T_i=600{\sim}700^{\circ}C$ for LCF and $T_{p}=500{\sim}600^{\circ}C$ for TMF. The stress-strain hysteresis loops in the TMF loading show a significant stress relaxation during compressive (heating) half cycle at $T_{p}>500^{\circ}C$, which develops tensile mean stress during cycling. Due to the stress relaxation, the TMF test sample reveals much lower dislocation density than the isothermally fatigued sample at the same temperature with $T_{p}$. A detailed correlation between fatigue microstructure and cycling deformation behavior is discussed.

저주기 피로해석을 위한 다층모델의 재료상수 추출에 관한 연구 (Study on the Material Parameter Extraction of the Overlay Model for the Low Cycle Fatigue(LCF) Analysis)

  • 김상호;카비르 후마이언;여태인
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.66-73
    • /
    • 2010
  • This work was focused on the material parameter extraction for the isothermal cyclic deformation analysis for which Chaboche(Combined Nonlinear Isotropic and Kinematic Hardening) and Overlay(Multi Linear Hardening) models are normally used. In this study all the parameters were driven especially based on Overlay theories. A simple method is suggested to find out best material parameters for the cyclic deformation analysis prior to the isothermal LCF(Low Cycle Fatigue) analysis. The parameter extraction was done using 400 series stainless steel data which were published in the reference papers. For simple and quick review of the parameters extracted by suggested method, 1D FORTRAN program was developed, and this program could reduce the time for checking the material data tremendously. For the application to FE code ABAQUS user subroutine for the material models was developed by means of UMAT(User Material Subroutine), and the stabilized hysteresis loops obtained by the numerical analysis were in good harmony with test results.

제강 및 열처리 조건이 압력용기강의 피로 및 파괴특성에 미치는 영향 (Influence of Steel-making Process and Heat-treatment Temperature on the Fatigue and Fracture Properties of Pressure Vessel Steels)

  • 고승기;나의균;백태현;박승주;원삼용;이성우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.87-92
    • /
    • 2001
  • In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as vacuum degassing(VD) and electro-slag remelting(ESR) methods. After the steel-making process, they were normalized at $955^{\circ}C$, quenched at $843^{\circ}C$, and finally tempered at $550^{\circ}C$ or $450^{\circ}C$, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-cycle fatigue(LCF) tests, fatigue crack growth rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process.

  • PDF