• Title/Summary/Keyword: LCD Back-light

Search Result 140, Processing Time 0.028 seconds

A Study on Image Processing For Local Dimming Of LED BLU (LED BLU 분할구동(Local Dimming)을 위한 영상처리 알고리즘에 관한 연구)

  • Kwak, Nae Joung;Han, Seung Hun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.602-606
    • /
    • 2008
  • LCD is supplied light by BLU(Back Light Unit) and the light represents color by each color filter. Also LCD adjusts the amount of light by controlling liquid crystal between the glass of upper plate and one of lower. However, it is impossible to completely exclude light due to the structural and physical characteristic of liquid crystal. Therefore, on transfering light through optical sheet and liquid crystal, many problems are generated. They are related with energy efficiency and get effective for the contrast of LCD to have lower contrast ratio than other display devices. To solve the problems, many techniques have been studied and developed but don't exist keys to solution for them. Among methods, local dimming is one example to be applied to LCD. In this paper we propose image processing algorithm for local dimming of BLU of LED used as light source. The proposed algorithm extracts maximum luminance signal and lights using each extracted signal on segmented region of BLU. Also the proposed algorithm generates image signal in corresponding to luminance of the segmented region and supplies them with LCD panel to represent image with improving luminance ratio.

  • PDF

A color-dimming method for low power LCD TV (저전력 LCD TV를 위한 컬러 디밍 백라이트 기술)

  • Lee, Yong-Hun;Suh, Doug-Young;Jung, Hye-Dong;Ham, Kyung-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.347-348
    • /
    • 2007
  • Most of the power consumption of a LCD TV is form the back light unit. Therefore, technoledge for decreasing the power consumption of the backlight unit is crucial for LCD Tvs. This research suggests a method of decreasing the power comsumption of LCD TV by analyzing the image's RGB info to dimm partitioned backlights independently.

  • PDF

Multi Channel PWM Design for Dimming Control of LED BLU (LED BLU 밝기 분할제어를 위한 다채널 PWM 설계)

  • Jeon, Ki-Man;Jung, Hye-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.211-212
    • /
    • 2008
  • 정보가전기기들의 대형화 제품개발 및 생산에 따른 전력소모가 극대화 되어있는 현실에 에너지소비를 줄이기위한 많은 연구들이 진행되고 있다. 그 중 LCD TV 분야는 전체 전력소비의 약 70% 이상이 Back-light에 의해 소비되므로 효율석인 Back-light 설계에 관한 관심이 증가하고 있다. 근래에 전통적인 CCFL 방식의 flack-light 구조에서 LED Back-light으로 점차 대체되어가고 있으며, 이러한 변화는 앞으로도 지속적으로 증가하기라 예상된다. 따라서, LED Hack-light의 효율적인 선력관기는 산업적 측면에서도 매우 주요한 부분이라 할 수 있다. 본 논문은 대형 TV의 에너지효율을 높이기위한 LED Rack-light 구성에 관한 요소들을 관계를 기술하고, 특히 Back-light 밝기제거를 통한 효율적인 전력관리를 실현위한 다채널 구동제어신호 생성에 관해 설명한다.

  • PDF

A Study on the Effect of Optical Characteristic in 2 inch LCD-BLU by Negative and Positive Optical Pattern : II. Mold and Light Characteristics (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 음각 및 양각 광학 패턴의 영향 연구 : II. 금형 및 광특성)

  • Hwang C.J.;Ko Y.B.;Kim J.S.;Min I.K.;Yu J.W.;Yoon K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.339-340
    • /
    • 2006
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF

An Experimental Study of the Effect of Process Conditions on Direct Surface Forming of a Light-Guide (성형조건에 따른 부분 압축가열방식의 도광판 성형에 관한 실험적 연구)

  • 조광환;윤경환
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • A light-guide is one of several important components of backlight unit in TFT-LCD. The manufacturing technology and optical system design of the light guide is very sensitive to quality and cost of the TFT-LCD module. In the present study a new manufacturing method which is called as direct surface forming(DSF) has been tested under various conditions. DSF is very similar to the well-known hot embossing except for partial contact between mold and substrate. The final V-groove pattern shows different shapes depend on the temperature of mold surface, contact time of mold and depth of V-groove.

Optimization Method for the Design of LCD Back-Light Unit (LCD Back-Light Unit 설계를 위한 최적화 기법)

  • Seo Heekyung;Ryu Yangseon;Choi Joonsoo;Hahn Kwang-Soo;Kim Seongcheol
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.3
    • /
    • pp.133-147
    • /
    • 2005
  • Various types of ray-tracing methods are used to predict the quantity measures of radiation illumination, the uniformity of illumination, radiation performance of LCD BLU(Hack-Light Unit). The uniformity of radiation illumination is one of the most important design factor of BLU and is usually controlled by the diffusive-ink pattern printed on the bottom of light-guide panel of BLU. Therefore it is desirable to produce an improved (ideally, the optimal) ink pattern to achieve the best uniformity of radiation illumination. In this paper, we applied the Welder-Mead simplex-search method among various direct search method to compute the optimal ink pattern. Direct search methods are widely used to optimize the functions which are often highly nonlinear, unpredictably discontinuous, and nondifferentiable, The ink-pattern controlling the uniformity of radiation illumination is one type of these functions. In this paper, we found that simplex search methods are well suited to computing the optimal diffusive-ink pattern. In extensive numerical testing, we have found the simplex search method to be reasonably efficient and reliable at computing the optimal diffusive-ink pattern. The result also suggests that optimization can improve the functionality of simulation tools which are used to design LCD BLU.

Design and analysis of the lens converting the spot light into the line light

  • Choi, Kyu-Man;Lee, Hae-Chun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.21-25
    • /
    • 2008
  • A CCFL which commonly used in the back light units for the LCD, possess very high brightness hence, was widely used as a line light source. However, the use of CCFL, caused for several environmental concerns since it contain highly toxic mercury, gradually replaced into a LED. But the LED is a spot light source, the dark area occurs in the surface of the back light units. In this paper, we proposed the lens that can convert the spot light into the line light and it can remove the dark area in the surface of the back light units. The lens is composed with the light condensation part and the light guiding part. The conditions obtained will be helpful to plan an optimum structure for such preparation.

  • PDF

A Study on the Effect of Optical Characteristic in 2 inch LCD-BLU by Negative and Positive Optical Pattern :I. Optical Analysis and Design (휴대폰용 2 인치 LCD-BLU의 광특성에 미치는 음각 및 양각 광학패턴의 영향 연구 :I. 광학 해석 및 설계)

  • Hwang C.J.;Ko Y.B.;Kim J.S.;Yoon K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.75-76
    • /
    • 2006
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LCP (Light Guide Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50{\sim}200{\mu}m$ in diameter on it by erosion method. But the surface of the erosion dots of LGP is very rough due to the characteristics of the erosion process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current dot patterned LGP, optical pattern design with $50{\mu}m$ micro-lens was applied in the present study. Especially, the negative and positive micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different pattern conditions to the brightness distribution of BLU with micro-lens patterned LGP. Finally, negative micro-lens patterned LGP showed superior results to the one made by positive in average luminance.

  • PDF

An Automatic Back-Light Brightness Control System of Mobile Display Using Built-In Photo Sensor (내장형 광센서를 이용한 모바일 디스플레이의 자동 광원 밝기 조정 시스템)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.713-716
    • /
    • 2008
  • This paper presents an automatic back-light brightness control system for mobile displays. One of the most important factors in mobile display is the power consumption due to the limited and movable power source. More than 80% of power of the LCD display is consumed by LED bark-light unit (BLU). The target brightness also becomes higher because of its moving picture and high resolution image, so there are some side effects for not only excessive power consumption but also ergonomic inconvenience in dark environment. To prevent this discomfort and reduce power consumption, this paper proposes automatic brightness control (ABC) technique in mobile displays. Developed system contains TFT-LCD panel with built-in photo sensor, driver IC capable of controlling photo sensor, and BLU. Since the photo sensor array built in panel detects automatically outdoor ambient light intensity, the power of BLU in dark environment is reduced. Developed ABC system showed reduced power consumption of 50% in dark environment. We believe that the proposed system is very useful to control power of mobile TFT-LCD.

  • PDF

HBDI 두뇌 이론을 이용한 TFT-LCD의 Soldering 공정원 배치

  • Park, Seung-Hyeon;Heo, Yong-Jeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.72-75
    • /
    • 2007
  • 본 연구는 TFT-LCD 부품인 Back Light Unit의 광원 역할을 하는 CCFL Assembly 공정을 분석하여 최적의 공정원 배치를 할 수 있도록 하였다. 이에 각 공정의 특성을 파악하고, 이를 Herrmann의 두뇌우성을 적용하여 공정원 배치를 하도록 하였다.

  • PDF