• Title/Summary/Keyword: LCA (Life Cycle Assessment)

Search Result 307, Processing Time 0.024 seconds

LCCA and LCA to Evaluate Feasibility for Introducing High-Efficiency Motors into Air Ventilation Systems of Public Facilities (고효율 전동기를 다중이용시설 환기설비에 도입하기 위한 LCCA 및 LCA 분석)

  • Quan, Junlong;Choi, Sooho;Kwon, Taehwan;Choi, Hyemi;Kim, Juhyung;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.41-49
    • /
    • 2015
  • The amount of energy consumed in air ventilation systems of public facilities accounts for 40% of their total energy consumption. To reduce their energy consumption, applying variable speed operation controlled by an inverter with a high-efficiency motor is suggested. Since these methods require higher initial investment costs compared to the existing systems, economic evaluation should be conducted from a long-term perspective. While LCCA(Life Cycle Cost Analysis) model is useful to estimate net savings of alternatives that differs with respect to initial costs and operating costs, the environmental burdens are not considered. On the contrary LCA(Life Cycle Assesment) model is suitable to assess environmental impacts associated with the stages of a product's life but it does not consider costs. In this study, the high-efficient motors are introduced into the air ventilation system of a subway station and a comprehensive analysis on the economic and environmental impacts of the proposed method is conducted by using LCCA and LCA model.

Study on assessment of the environmental impacts for track system by Input-Output Analysis (산업연관분석법에 의한 궤도시스템의 환경부하 평가)

  • Kim, Yong-Ki;Lee, Cheul-Kyu;Jeon, Yong-Sam;Jo, Hyun-Jung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.73-76
    • /
    • 2009
  • LCA is nowadays getting popular as a tool to assess the environmental impacts. We can assess the environmental impacts of products and also compare the environmental performance between products with LCA. Furthermore, the LCA results can be used for designing eco-friendly products. But LCA needs an enormous amount of data collection, calculations of energy and material balance. which required to spend pretty much time and cost. However, If we use Input-Output Analysis, There is a lot of advantages that we can save time and cost to calculate and also analyze energy-material balance more comprehensively. Therefore, we implemented the fundamental research of the environmental impact assessment on railway system using life cycle inventory analysis and Input-Output Analysis method.

  • PDF

A LCA Case Study on Basic Materials of PC (PC 구성물질에 관한 LCA 사례연구)

  • Lee, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-17
    • /
    • 2005
  • In this paper, the life cycle assessment(LCA) methodology is applied to Personal Computer's basic materials in order to analyze the impact to the environment. LCA data collection is carried out taking into account on main materials of PC's parts and component. And the impact assessment is the environmental burden on three factor into air emission(CO2, SOx, NOx), five factor into water emission(BOD, COD, SS, N, P), and three factor on transported substance(cl, NH4, SO4). According to the result, the environmental burden of PC's basic materials was proved to be used total energy 6,285Mj and emitted CO2 259.8kg, SOx 3,571g, NOx 330g, COD 1,328g, P 246g, N 2,434g. And this paper was presented the problems of its disposition-incinerating, landfill, and recycling.

Comparative LCA of three types of Interior Panel (IP) in Electric Motor Unit (EMU) (전동차 내장패널(Interior Panel)에 대한 비교 전과정평가)

  • Choi, Yo-Han;Lee, Sang-Yong;Kim, Yong-Ki;Lee, Kun-Mo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.596-599
    • /
    • 2007
  • A comparative Life Cycle Assessment (LCA) among three types of Electric Motor Unit (EMU) Interior Panel (IP) was conducted. A functional unit for comparative LCA is a weight of IP for 1 EMU. It is assumed that Manufacturing stage and its upstream processes, Use stage and End of Life (EoL) stage are included in the boundary of product system. For Use stage, the weight of IP causes electricity consumption. It is assumed that aluminum IP is recycled and the other IPs are incinerated at the EoL stage. As a comparison results, aluminum IP has much larger environmental impact (5.162pt) than others (FRP IP; 4.069pt, Phenol IP; 4.053pt) even though recycling consideration is included. The manufacturing stage of aluminum IP has relative big environmental impact (1.824pt) and this point make the most important difference from other IPs (FRP IP; 0.1617pt, Phenol IP; 0.4534pt)). Despite of large weight difference between FRP IP (888.96kg) and phenol IP (316kg), the final environmental impact result has only little difference (0.016pt, 0.39%). With this result, the EMU designer can choose IP with a consideration of the environmental performance of IP.

Environmental and economic life cycle analysis of hydrogen as Transportation fuels (자동차 연료로서 수소의 전과정 환경성/경제성 분석)

  • Lee, Ji-Yong;Cha, Kyung-Hoon;Yu, Moo-Sang;Lee, Soo-Yeon;Hur, Tak;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.543-547
    • /
    • 2007
  • 화석연료의 점진적 고갈과 그 사용에 따른 지구온난화 그리고 에너지 안보를 해결하기 위하여 세계 각국에서는 대체에너지 개발에 노력을 기울이고 있다. 그 중 수소는 가장 주목받고 있는 대체에너지 원으로 현재 기술개발을 통하여 상업화 시기를 앞당기려고 하고 있다. 다시 말해서, 현재는 수소에너지 시대의 진입 시점이라고 할 수 있다. 이러한 수소는 다양한 소스에서 생산될 수 있으며, 수송연료로 연소 시, 유해 배출물이 거의 나오지 않는 장점이 있다. 그러나 수소는 그 생산 경로에 따라서, 다양한 환경성 및 경제성을 나타낼 수 있다. 본 연구에서는 국내 수소 생산 방식으로 개발/상업화 되어 있는 NGSR, Naphtha SR, WE에 대하여, LCA와 LCCA 방법을 통하여, 수소 경로 전반 즉, 원료채취에서부터 자동차로 주행하였을 때까지를 포함하여 각 대상 수소 경로의 환경성과 경제성을 평가하였다. LCA와 LCCA 결과를 살펴보면, Naphtha SR 및 NGSR 수소 경로에서는 지구온난화와 화석자원 소모 부문 모두 기존연료와 비교해보았을 때 개선효과가 뚜렷하게 나타났으나, WE 수소 경로에서는 오히려 환경부하가 증가되는 것으로 나타났다. 또한 비용적인 측면에서 살펴보면, 수소에 가솔린과 동일한 연료 세율을 부과하더라도 수소가 가솔린에 비하여 주행 시 연료 비용이 저감되어 연료로서 가격경쟁력을 확보하였으며, 연료세를 부과하지 않는 다면, Naphtha SR로 생산하여 유통한 수소가 수송연료로써 가장 비용 효율적인 것으로 나타났다.

  • PDF

Life Cycle Assessment for the Fabrication Process of Superhydrophilic Oil/Water Separator (초친수성 유수분리필터 제조공정에 관한 전과정평가)

  • Park, Sungmook;Kim, Jieun;Yeom, Changju;Lee, Heyjin;Yang, Sungik;Eom, Ig-chun;Kim, Pil-je;Kim, Younghun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.800-805
    • /
    • 2016
  • Rapid growth in nanotechnologies promises novel benefits through the exploitation of their unique industrial applications. However, as the production volume of nanomaterials increases, their unintentional exposure to the environment has been occured. Potential impacts of nanoproducts on the environment can be evaluated in the life cycle assessment (LCA). LCA is the systematic analysis of the resource usages and emissions over the life time from the primary resources to the moment of disposal. In this study, we performed LCA for fabrication processes of superhydrophilic oil/water separator using nano-$TiO_2$. $TOTAL^{TM}$ freeware was used to analyze for all fabrication processes, and 6-environmental impact factors (resource depletion, climate change, ozone depletion, acidification, eutropication, and photochemical oxidation) were introduced. In addition, the use of nano-$TiO_2$ in the fabrication of superhydrophilic oil/water separator was actively contributed to the environmental impact factors, compared to the bulk-$TiO_2$.

Development of framework to estimate environmental loads of PSC beam bridges based on LCA

  • Lee, Wan Ryul;Kim, Kyong Ju;Yun, Won Gun;Kim, In Kyum
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.730-731
    • /
    • 2015
  • This study aims at giving the framework to estimate the environmental load at planning and schematic phase. With increasing awareness of environmental issues, the effort to reduce the environmental impacts caused by human activity has been increasingly enlarged. So far most of researches estimating CO2 emissions have analyzed energy consumption based on BOQ (Bills of Quantity) acquired after detailed design. There is also lack of reliability in the estimated environmental impact using the basic unit of a facility at the planning stage, because it uses a limited specific section of historical data. Thus, this study is targeted at developing framework to assess reliable environmental loads based on information available at project early phases by making case-bases from historical design information on PSC Beam Bridge. Historical database is built on the basis of the LCA (Life Cycle Assessment) and in order to set input information for estimating model, the literature about information in an early project phase are reviewed. Using the information available in the planning and schematic design stage, the Framework is presented to estimate the environmental load in an early stage in the project. Developing an environmental load estimation model in accordance with the Framework presented in this study, it is expected that the environmental load in the initial project phase can be estimated more quickly and accurately.

  • PDF

A Study on the Calculation Method of the Elastomeric Bearing Life Cycle Inventory (LCI) Database to Improve Reliability of Evaluation of Environmental Load of Bridges (교량의 환경부하평가 신뢰성 향상을 위한 교량용 탄성받침 전과정목록 산정방법에 관한 연구)

  • Wie, Deahyung;Kim, Youngchun;Kwak, Inho;Hwang, Yongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.681-691
    • /
    • 2017
  • In this research, life cycle inventory database (LCI DB) was developed for elastomeric bearing employing life cycle assessment (LCA) methodology additionally the reliability improvement rate in the evaluation of the environmental load of the bridge was analyzed. As are result of impact assessment by 6 major impact categories, production of elastomeric bearing puts on environmental impact in the order of resource depletion, global warming, photochemical oxidant creation. and among a wide variety of input, steel plates contributes in most of the impact categories. As a result of applying the elastomeric bearing LCI database constructed in this study, the environmental loads increased by 0.53% on average, and the cut-off based on the cost of input materials increased by 11.36%. It is anticipated that it will be possible to improve the credibility and to provide data based on current production technology, such as estimating GHG emissions and evaluating environmental load, by constructing elastomeric bearing LCI DB.

A study on the proposal of environmental capacity criterion method for windows system in buildings (창호시스템의 환경성능평가기법 정립에 관한 연구)

  • Choi, Doo-Sung;Kim, Eun-Gyu;Cho, Kyun-Hyong
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 2004
  • This research investigates the life-cycle energy consumption of the windows used for the building's exterior cladding, and its environmental potential aspects by utilizing the LCA. The research scope has taken account of the entire life-cycle of the windows from the extraction of raw materials to its disposal, of which given sample building type is an apartment building. Results gained from the LCA of the windows as one of the steps in analysis reflects the current global interest and analysis trend towards the world's environmental issue on all fields of industry including the architectural industry, of which its newly established standards of architectural windows can further promote more environmentally sustainable factor compared to the previous analysis (focused more on energy efficiency assessment of the use stage).

A Study on the Analysis of Carbon Emissions by Transportation Distance of Building Materials (건축자재 운송거리에 따른 탄소배출량 분석에 관한 연구)

  • Kim, Hyeon-Suk;Tae, Sung-Ho;Lim, Hyo-Jin;Jang, Hyeong-Jae;Lee, Chung-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.125-126
    • /
    • 2022
  • As environmental problems around the world become serious, Korea has also raised the greenhouse gas reduction in the building sector to 32.8% compared to 2018, and efforts to reduce carbon in buildings are expanding. Recently, research is being actively conducted to reduce carbon in the long term by expanding the scope of greenhouse gas indirect emissions (Scope3), and even within the domestic Green Standard for Energy and Environmental Design(G-SEED) by quantitatively evaluating the environmental impact of buildings during the entire life cycle. However, it is difficult to accurately evaluate the carbon emission of the transportation process by assuming the material transport distance in the evaluation of the Life Cycle Assessment(LCA). Therefore, in this study, the main building materials of the building were selected through case evaluation and the carbon emission of the material transport process was derived based on the actual transport distance, and this was compared and analyzed with the theoretical LCA results.

  • PDF