• Title/Summary/Keyword: LC-MS-MS

Search Result 1,313, Processing Time 0.025 seconds

Inhibitory Effect of Astragali Radix on Matrix Degradation in Human Articular Cartilage

  • CHOI SOOIM;PARK SO-RA;HEO TAE-RYEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1258-1266
    • /
    • 2005
  • The present study was carried out in order to assess the protective effects of calycosin-7-O-$\beta$-D-glucopyranoside, isolated from Astragali radix (AR), on hyaluronidase (HAase) and the recombinant human interleukin-$1\beta$ (IL-$1\beta$)-induced matrix degradation in human articular cartilage and chondrocytes. We isolated the active component from the n-butanol soluble fraction of AR (ARBu) as the HAase inhibitor and structurally identified as calycosin-7-O-$\beta$-D-glucopyranoside by LC-MS, IR, ${1}^H$ NMR, and ${13}^C$ NMR analyses. The $IC_{50}$ of this component on HAase was found to be 3.7 mg/ml by in vitro agarose plate assay. The protective effect of ARBu on the matrix gene expression of immortalized chondrocyte cell line C28/I2 treated with HAase was investigated using a reverse transcription polymerase chain reaction (RT-PCR), and its effect on HAase and IL-$1\beta$-induced matrix degradation in human articular cartilage was determined by a staining method and calculating the amount of degraded glycosaminoglycan (GAG) from the cultured media. Pretreatment with calycosin-7-O-$\beta$-D-glucopyranoside effectively protected human chondrocytes and articular cartilage from matrix degradation. Therefore, calycosin-7-O-$\beta$-D-glucopyranoside from AR appears to be a potential natural ant-inflammatory or antii-osteoarthritis agent and can be effectively used to protect from proteoglycan (PG) degradation.

Construction of Artificial Biosynthetic Pathways for Resveratrol Glucoside Derivatives

  • Choi, Oksik;Lee, Jae Kyoung;Kang, Sun-Young;Pandey, Ramesh Prasad;Sohng, Jae-Kyung;Ahn, Jong Seog;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.614-618
    • /
    • 2014
  • Resveratrol, which is a polyphenolic antioxidant, is dose-dependent when used to provide health benefits, to enhance stress resistance, and to extend lifespans. However, even though resveratrol has therapeutic benefits, its clinical therapeutic effect is limited owing to its low oral bioavailability. An Escherichia coli system was developed that contains an artificial biosynthetic pathway that produces resveratrol glucoside derivatives, such as resveratrol-3-Oglucoside (piceid) and resveratrol-4'-O-glucoside (resveratroloside), from simple carbon sources. This artificial biosynthetic pathway contains a glycosyltransferase addition (YjiC from Bacillus) with resveratrol biosynthetic genes. The produced glucoside compounds were verified through the presence of a product peak(s) and also through LC/MS analyses. The strategy used in this research demonstrates the first harnessing of E. coli for de novo synthesis of resveratrol glucoside derivatives from a simple sugar medium.

Biotransformation of Glycosylated Saponins in Balloon Flower Root Extract into 3-O-β-ᴅ-Glucopyranosyl Platycosides by Deglycosylation of Pectinase from Aspergillus aculeatus

  • Ju, Jung-Hun;Kang, Su-Hwan;Kim, Tae-Hun;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.946-954
    • /
    • 2020
  • Platycodon grandiflorum root (Platycodi radix) saponins, platycosides, have been used as health supplements and food items for the treatment of respiratory disorders and pulmonary diseases. Deglycosylated saponins have been known to exert stronger biological effects than their glycosylated forms. In the present study, glycosylated platycosides in Platycodi radix extract were biotransformed into deglycosylated 3-O-β-ᴅ-glucopyranosyl platycosides, including 3-O-β-ᴅ-glucopyranosyl platycodigenin, 3-O-β-ᴅ-glucopyranosyl polygalacic acid, and 3-O-β-ᴅ-glucopyranosyl platyconic acid, by pectinase from Aspergillus aculeatus. This is the first report on the quantitative enzymatic production of 3-O-β-ᴅ-glucopyranosyl platycosides. The chemical structures of 3-O-β-ᴅ-glucopyranosyl platycosides were identified with LC/MS. Moreover, the biotransformation pathways of the three types of platycosides in Platycodi radix into 3-O-β-ᴅ-glucopyranosyl platycosides were established.

Absorption, Distribution, Metabolism, and Excretion of Decursin and Decursinol Angelate from Angelica gigas Nakai

  • Kim, Kang-Min;Kim, Myo-Jeong;Kang, Jae-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1569-1572
    • /
    • 2009
  • The pharmacokinetics of decursin and decursinol angelate (D/DA) were investigated in male SD rats following oral and intravenous administration. D/DA and metabolites obtained from in vitro samples were evaluated by LC/MS. The levels of D/DA and metabolized decursinol in the blood following oral and intravenous administrations declined according to first-order kinetics, with $T_{1/2}$ values of 56.67, 58.01, and 57.22 h, respectively, being observed after administration of a dose of 2 mg/kg body weight. The large intestine was the major site of disposition following oral administration. These data indicate that D/DA is rapidly absorbed from the gastrointestinal tract. In in vitro experiment utilizing liver microsomal protein, the major metabolic reaction of D/DA occurred to change decursinol. The cumulative biliary, urinary, and fecal excretions of D/DA in bile duct-cannulated rats was $36.10{\pm}2.9%$, $25.35{\pm}3.8%$, and $34.20{\pm}3.2%$, respectively, at 72 h after administration. These results indicate that the absorption of D/DA is almost complete, and that its metabolites are primarily excreted into feces through the bile. These results indicate that D/DA is subject to enterohepatic circulation.

Isolation, Identification and Determination of Antioxidant in Ginger (Zingiber officinale) Rhizome

  • Cho, Kang-Jin;Kim, Jin-Weon;Choi, In-Lok;Kim, Jung-Bong;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.12-15
    • /
    • 2001
  • The antioxidative compounds and antioxidant contents of ginger (Zingiber officinale) rhizomes were determined. Substances reextracted using ethyl acetate from crude methanol extract of fresh ginger rhizome were separated through thin layer chromatography. Ten phenolic antioxidative bands were visualized through color reactions using ferric chloride-potassium ferricyanide and 1,1-diphenyl-2-picrylbydrazyl (DPPH). The antioxidative compounds were purified through preparative TLC and high performance liquid chromatography (HPLC), among which, five antioxidants were identified as 4-, 6-, 8-. and 10-gingerols and 6-shogaol on the basis of their molecular weights determined through LC-MS. As shown in experiments using DPPH free radicals, 6-Gingerol and PT4-HP8 (unknown) were revealed to be more efficient than BHT (butylated hydroxy toluene). Contents of gingerols were determined through reverse phase HPLC. Total gingerol contents (sum of 6-,8-, and 10-gingerols) in rhizomes of different ginger varieties varied significantly. The HG55 (collected at Wanju district in Korea) and the HG52 (imported from Brazil) showed the highest gingerol contents.

  • PDF

Exploring the Nucleophilic N- and S-Glycosylation Capacity of Bacillus licheniformis YjiC Enzyme

  • Bashyal, Puspalata;Thapa, Samir Bahadur;Kim, Tae-Su;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1092-1096
    • /
    • 2020
  • YjiC, a glycosyltransferase from Bacillus licheniformis, is a well-known versatile enzyme for glycosylation of diverse substrates. Although a number of O-glycosylated products have been produced using YjiC, no report has been updated for nucleophilic N-, S-, and C- glycosylation. Here, we report the additional functional capacity of YjiC for nucleophilic N- and S- glycosylation using a broad substrate spectrum including UDP-α-D-glucose, UDP-N-acetyl glucosamine, UDP-N-acetylgalactosamine, UDP-α-D-glucuronic acid, TDP-α-L-rhamnose, TDP-α-D-viosamine, and GDP-α-L-fucose as donor and various amine and thiol groups containing natural products as acceptor substrates. The results revealed YjiC as a promiscuous enzyme for conjugating diverse sugars at amine and thiol functional groups of small molecules applicable for generating glycofunctionalized chemical diversity libraries. The glycosylated products were analyzed using HPLC and LC/MS and compared with previous reports.

Mithramycin Inhibits Etoposide Resistance in Glucose-deprived HT-29 Human Colon Carcinoma Cells

  • Lee, Eun-Mi;Park, Hae-Ryong;Hwang, Ji-Hwan;Park, Dong-Jin;Chang, Kyu-Seob;Kim, Chang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1856-1861
    • /
    • 2007
  • Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase $II{\alpha}$, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.

Metabolism and Excretion Study of DW116, A New Fluoroquinolone, in Rats

  • Jung, Byung-Hwa;Park, Young-Han;Park, Jongsei;Chung, Bong-Chul
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.358-362
    • /
    • 1997
  • Metabolite identification and urinary and biliary excretion of the new fluoroquinolone antibacterial agent DW116 [1-(5-fluoro-2-pyridyl)-6-fluoro-7-(4-methyl-1 -piperazinyl)-1, 4-dihydro-4-oxoquinoline-3-carboxylic acid, hydrochloride] after oral administration have been studied in Sprague-Dawley rats. The excretion kinetics were monoexponential. Most of the drug was eliminated via the hepatic and renal routes. Mean renal clearance of DW116 was 73.4 ml/hr/kg and mean biliary clearance was 83.8 ml/hr/kg. The major metabolite excreted in the bile was identified as the glucuronide ester of the parent drug using base-hydrolysis of the conjugate metabolite followed by co-HPLC with standard compound, $^{19}$ F-NMR and LC-MS methods. The glucuronide conjugate was also found in urine. The mean urinary recoveries of free and total (free plus glucuronide ester) DW116 were $28.6{\pm}2.7% $and $36.4{\pm}1.8%$ of the administered dose and the corresponding biliary recoveries were $14.4{\pm} 5.5%$ and $37.0{\pm}7.6%$, respectively.

  • PDF

Dyeing Properties of Microbial Violacein on Mutifiber Fabrics (미생물 violacein 색소의 다섬교직포에서의 염색성)

  • Choi, Jong-Myoung;Kim, Yong-Sook
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.818-826
    • /
    • 2009
  • Dyeability of microbial violacein produced from Chromobacterum violaceum CV107 on to multifiber fabrics has been studied. The bluish-purple colourants were produced by cultivation of Chromobacterum violaceum using LB liquid medium for 2 days. The colourant was extracted with 80% acetone and identified as violacein by LC/MS analysis. The violacein could be dyed on not only natural fibers such as Cotton, Silk and Wool but also synthetic fibers such as Diacetate, Triacetate, Creslan 61 and Nylon 66. Maximum K/S values were shown at 540-580 nm according to different fiber with color appearance of purple or blue. An optimum pH and temperature under dyeing condition were 10 and $70^{\circ}C$, respectively. Any mordants were not improved colour density and quality on various fabrics. From this studies, pigments produced microbe have a high potentials for natural dyeing on fabrics. Finally, development of new colourants from microbe has made a possible change for new dyeing field in respects of eco-friend and repeatability of natural dyeing for apparels.

Metacercarial proteins interacting with WD40-repeat protein of Clonorchis sinensis

  • Cho, Pyo-Yun;Kim, Tae-Im;Li, Shunyu;Hong, Sung-Jong;Choi, Min-Ho;Hong, Sung-Tae;Chung, Yong-Je
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.3
    • /
    • pp.229-232
    • /
    • 2007
  • The WD40-repeat proteins serve as a platform coordinating partner proteins and are involved in a range of regulatory cellular functions. A WD40-repeat protein (CsWD1) of Clonorchis sinensis previously cloned is expressed stage-specifically in the tegumental syncytium of C. sinensis metacercariae. In the present study, interact-ing proteins with the CsWD1 protein was purified by immunoprecipitation and 2 dimension gel electrophoresis from the C. sinensis metacercaria soluble extract, and tryptic peptides were analyzed by LC/ESI-MS. Putative partner proteins were annotated to be actin-2, glyceraldehyde-3-phosphate dehydrogenase, and hypothetical and unmanned proteins. The CsWD1 protein was predicted to contain 3 conserved actin-interacting residues on its functional surface. With these results, the CsWD1 protein is suggested to be an actin-interacting protein of C. sinensis.