• 제목/요약/키워드: LBP 피쳐

검색결과 3건 처리시간 0.02초

특징점기반 Gabor 및 LBP 피쳐를 이용한 얼굴 인식 (Face Recognition by Fiducial Points Based Gabor and LBP Features)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2013
  • 얼굴 영상 데이터베이스에서 제공하는 눈 좌표에 의존해서 부분 자동 얼굴 인식 알고리즘을 설계 구현하면 실 환경 얼굴 인식 시스템에서는 눈 좌표 추출 알고리즘의 정확도에 따라 인식 성능이 달라질 수 있다. 본 논문에서는 얼굴의 눈, 코, 입 및 윤곽선 정보를 바탕으로 설정한 특징점 기반의 얼굴 모델 그래프를 생성하여 얼굴 영상에 정합시키고 각 특징점에서 Gabor 및 LBP 피쳐를 추출해서 결합하는 방식의 완전 자동 얼굴 인식 알고리즘을 제안하였다. 본 알고리즘에서는 완전 자동으로 얼굴 영상에 얼굴 모델 그래프를 맞출 뿐만 아니라 기존의 Gabor 피쳐에 LBP 피쳐를 추가함으로써 인식 성능을 극대화 시킬 수 있도록 하였다. 제안한 알고리즘을 FERET 데이터베이스에 적용해 본 결과 1,000명 이상의 얼굴을 실시간으로 인식할 수 있었고 각 데이터 집합에 대해서 우수한 인식 성능을 얻을 수 있었다.

Boosted 국부 이진 패턴을 적용한 얼굴 표정 인식에 관한 연구 (A Study on Facial Expression Recognition using Boosted Local Binary Pattern)

  • 원철호
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1357-1367
    • /
    • 2013
  • 최근 얼굴 표정 인식에 있어 영상 기반의 방법의 하나로서 ULBP 블록 히스토그램 피쳐와 SVM을 분류기로 사용한 연구가 수행되었다. Ojala 등에 의해 소개된 LBP는 높은 식별력과 조명의 변화에 대한 내구성과 간단한 연산 때문에 영상 인식 분야에 많이 사용되고 있다. 본 논문에서는 ULBP 블록 히스토그램을 계산함에 있어 분할 영역의 이동, 크기 변화에 더하여 미세한 특징 요소를 표현할 수 있도록 $LBP_{8,2}$$LBP_{8,1}$를 결합하였다. $LBP_{8,1}$ 660개, $LBP_{8,2}$ 550개의 분할 창으로부터 1210개의 ULBP 히스토그램 피쳐를 추출하고 이로부터 AdaBoost를 이용하여 50개의 약 분류기를 생성하였다. $LBP_{8,1}$$LBP_{8,2}$가 결합된 하이브리드 형태의 ULBP 블록 히스토그램 피쳐와 SVM 분류기를 이용함으로써 표정 인식률을 향상시킬 수 있었으며 다양한 실험을 통하여 이를 확인하였다. 본 논문에서 제안한 하이브리드 Boosted ULBP 히스토그램의 경우에 표정의 인식률이 96.3%로 가장 높은 결과를 보였으며 제안한 방법의 우수성을 확인하였다.

휴먼 인지를 위한 근적외선 영상에서의 얼굴 검출 (Face Detection in Near Infra-red for Human Recognition)

  • 이경숙;김현덕
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권2호
    • /
    • pp.189-195
    • /
    • 2012
  • 본 논문에서는 휴먼 인지를 위한, 근적외선 얼굴 영상에서의 얼굴 검출 방법이 제안된다. 에지의 강도와 방향에 기반한 에지 히스토그램이 근적외선 영상으로부터 얼굴을 검출하기 위해 사용되었다. 조명변화에 강인하기 때문에, 제안된 에지 히스토그램은 얼굴을 효과적으로 표현하고 구별한다. 얼굴 검출을 위한 분류기로서는 SVM(Support Vector Machine)을 사용하였으며 제안한 방법은 ULBP(Uniform Local Binary Pattern)보다 적은 피쳐 개수를 가지면서도 에러율 측면에서, ULBP의 경우보다 나은 성능을 나타내었다.