• Title/Summary/Keyword: LBB(Leak before break)

Search Result 59, Processing Time 0.025 seconds

Modification of Current Leak Before Break Criteria for Nuclear Piping System (원자력 발전소 배관에 대한 파단전누설 개념 적용기준의 수정)

  • Yu, Yeong-Jun;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1862-1871
    • /
    • 1996
  • The puopose of this paper is sto modify the current LBB criteria. The validity of current LBB criteria and current standard LBB analysis mehtod are evaluated using linear elastic fracture mechanics and elastic-plastic fracture mechanics. The results of evaluation demonstrate that the current LBB driteria are very conservative and some level of margins already exist in the standard LBB analysis method. Thus, the margin on load .root. and margin on crack size 2 can be eliminated to extend LBB application for the samller diameter pipe.

LEAK-BEFORE-BREAK ANALYSIS OF THERMALLY AGED NUCLEAR PIPE UNDER DIFFERENT BENDING MOMENTS

  • LV, XUMING;LI, SHILEI;ZHANG, HAILONG;WANG, YANLI;WANG, ZHAOXI;XUE, FEI;WANG, XITAO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.712-718
    • /
    • 2015
  • Cast duplex stainless steels are susceptible to thermal aging during long-term service at temperatures ranging from $280^{\circ}C$ to $450^{\circ}C$. To analyze the effect of thermal aging on leak-before-break (LBB) behavior, three-dimensional finite element analysis models were built for circumferentially cracked pipes. Based on the elasticeplastic fracture mechanics theory, the detectable leakage crack length calculation and J-integral stability assessment diagram approach were carried out under different bending moments. The LBB curves and LBB assessment diagrams for unaged and thermally aged pipes were constructed. The results show that the detectable leakage crack length for thermally aged pipes increases with increasing bending moments, whereas the critical crack length decreases. The ligament instability line and critical crack length line for thermally aged pipes move downward and to the left, respectively, and unsafe LBB assessment results will be produced if thermal aging is not considered. If the applied bending moment is increased, the degree of safety decreases in the LBB assessment.

Leak-Before-Break (LBB) Assessment Method Considering Crack Nonlinearity Using Effective Elastic Modulus and Material Nonlinearity (유효탄성계수를 이용한 균열 비선형 및 재료 비선형을 고려한 파단전누설(LBB) 평가 방법)

  • Kim, Maan-Won;Kim, Sung-Hwan;Lee, Eui-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.651-659
    • /
    • 2011
  • With the increase in the thermal power output of recently developed nuclear power plants, the applied forces and moments are increased in some piping systems, so that the leak-before-break (LBB) application criteria would not be satisfied in those pipes. In this paper, we present a method for obtaining the additive LBB margin in the pipes by considering the nonlinearity of the crack and material properties. Finite element analysis and the moment-rotation equation of beam theory were used to calculate the nonlinearity of the crack and material properties. Moreover crack stability analysis was performed using the method proposed in this study. The LBB margin was increased effectively through consideration of the nonlinearity of the crack and material properties in the pipe.

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

The Effect of Tributary Pipe Breaks on the Core Support Barrel Shell Responses (분기관파단이 노심지지배럴의 쉘응답에 미치는 영향)

  • Jhung, Myung-Jo;Hwan, Won-Gul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.204-214
    • /
    • 1993
  • Work on fracture mechanics has provided a technical basis for elimination of main coolant loop double ended guillotine breaks from the structural design basis of reactor coolant system. Without main coolant loop pipe breaks, the tributary pipe breaks must be considered as design bases until further fracture mechanics work could eliminate some of these breaks from design consideration. This paper determines the core support barrel shell responses for the 3 inch pressurizer spray line nozzle break which is expected to be the only inlet break remaining in the primary side after leak-before-break evaluation is extended to smaller size pipes in the near future. The responses are compared with those due to 14 inch safety injection nozzle break and main coolant loop pipe break. The results show that, when the leak-before-break concept is applied to the primary side piping systems with a diameter of 10 inches or over, the core support barrel shell responses due to pipe breaks in the primary side are negligible for the faulted condition design.

  • PDF

Dynamic Strain Aging on the Leak-Before-Break Analysis in SA106 Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.193-198
    • /
    • 1996
  • The effect of dynamic strain aging (DSA) on the leak-before-break (LBB) analysis was estimated through the evaluation of leakage-size-crack and flaw stability in SA106 Gr.C piping steel. Also. the results were represented as a form of "LBB allowable load window". In the DSA temperature region. the leakage-size-crack length was smaller than that at other temperatures and it increased with increasing tensile strain rate. In the results of flaw stability analysis. the lowest instability load appeared at the temperature corresponding to minimum J- R curve which was caused by DSA. The instability load near the plant operating temperature depended on the loading rate of J-R data. and decreased with increasing tensile strain rate. These are due to the strain hardening characteristic and strain rate sensitivity of DSA. In the "LBB allowable load window". LBB allowable region was the narrowest at the temperature and loading conditions where DSA occurs.

  • PDF

Evaluation of Leak Rate Through a Crack with Linearly-Varying Sectional Area (선형적으로 변하는 단면적을 가진 균열에서의 누설률 평가)

  • Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.821-826
    • /
    • 2016
  • The leak before break (LBB) concept is used in pipe line design for nuclear power plants. For application of the LBB concept, leak rates through cracks should be evaluated accurately. Usually leak late analyses are performed for through-thickness cracks with constant cross-sectional area. However, the cross-sectional area at the inner pipe surface of a crack can be different from that at the outer surface. In this paper, leak rate analyses are performed for the cracks with linearly-varying cross-sectional areas. The effect of varying the cross-sectional area on leak rates was examined. Leak rates were also evaluated for cracks in bi-material pipes. Finally, the effects of crack surface morphology parameters on leak rates were examined.

Effect of Nozzle on LBB Evaluation for Small Diameter Nuclear Piping (직경이 작은 원자력배관의 파단전누설 해석에 미치는 노즐의 영향)

  • Yu, Yeong-Jun;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1872-1881
    • /
    • 1996
  • LBB(Leak-Before-Break) analysis is performed for the highest stress location of each different type of mateerials in the nuclear piping line. In most cases, the highest stress occurs in the pipe and nozzle interface location. i.e. terminal end. The current finite element analysis approach utilizes the symmetry condition both for locations near the nozzle and for locationa away from the nozzle to minimize the size of the finite element model and to make analysis simple when calculating the J-integral values at the crack tip. In other words, the nozzle is not included in the finite element model. However, in reality, the symmetric condition is not applicable for the pipe-nozzle interface location. Because the pipe-nozzle interface location is asymmetric due to different stiffenss of the pipe and nozzle(both material and dimensions). The simplified analysis approach for pipe-nozzle interface locaiton is too conservative for a smaller diameter piping. In tlhis paper, various analyses are performed for the range of materials and crack sizes to evaluate the nozzle effect for a LBB anlaysis. This paper presents methodology for developing the piping evaluaiton diagram at the pipe-nozzle interface location.

REVIEW OF DYNAMIC LOADING J-R TEST METHOD FOR LEAK BEFORE BREAK OF NUCLEAR PIPING

  • Oh, Young-Jin;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.639-656
    • /
    • 2006
  • In order to apply the leak before break (LBB) concept to nuclear piping systems, the dynamic strain aging effect of low carbon steel materials has to be taken into account, in compliance with the requirements of the Korean Standard Review Guide (KSRG) 3.6.3-1. For this goal, J-R tests are needed for a range of various temperatures and loading rates, including dynamic loading conditions. In the dynamic loading J-R test, the unloading compliance method can not be applied to measure the crack growth and direct current potential drop (DCPD) method; this method also has a problem defining the crack initiation point. The normalization method is known as a very useful method to determine the J-R curve under dynamic loading because it does not need additional equipment or complicated loading sequences such as electric current or unloading. This method was accepted by the American Society for Testing and Materials (ASTM) as a standard test method E1820 A15 in 2001. However, it has not yet been clearly verified yet if the normalization method is sufficiently reliable to be applied to LBB. In this study, the basic background of the J-integral, LBB and dynamic loading J-R test are explained, and the current status for dynamic loading J-R test methods are reviewed from the view point of LBB for nuclear piping. In particular, the theoretical and historical background of the normalization method which has received attention recently, is summarized. Recent studies for this method are introduced and future works are suggested that may improve the reliability of LBB for nuclear piping.

Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress (인장 굽힘피로를 받는 부재의 피로수명과 균열관통)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF